Heart Rate Variability and Salivary Biomarkers Differences between Fibromyalgia and Healthy Participants after an Exercise Fatigue Protocol: An Experimental Study

Abstract:

Previous studies showed that people with Fibromyalgia (FM) suffer from dysautonomia. Dysautonomia consists of persistent autonomic nervous system hyperactivity at rest and hyporeactivity during stressful situations. There is evidence that parameters reflecting the complex interplay between the autonomic nervous system and the cardiovascular system during exercise can provide significant prognostic information. Therefore, this study aimed to investigate the differences between people with FM and healthy controls on heart rate variability (HRV) and salivary parameters (such as flow, protein concentration, enzymatic activities of amylase, catalase and glutathione peroxidase) in two moments: (1) at baseline, and (2) after an exercise fatigue protocol.

A total of 37 participants, twenty-one were people with fibromyalgia and sixteen were healthy controls, participated in this cross-sectional study. HRV and salivary samples were collected before and after an exercise fatigue protocol. The fatigue protocol consisted of 20 repetitions of knee extensions and flexions of the dominant leg at 180 °·s-1 (degrees per second).

Significant differences were found in the HRV (stress index, LF and HF variables) and salivary biomarkers (with a higher concentration of salivary amylase in people with FM compared to healthy controls). Exercise acute effects on HRV showed that people with FM did not significantly react to exercise. However, significant differences between baseline and post-exercise on HRV significantly induce alteration on the HRV of healthy controls. Catalase significantly increased after exercise in healthy controls whereas salivary flow significantly increased in women with FM after an exercise fatigue protocol.

Our study suggests that a higher α-amylase activity and an impaired HRV can be used as possible biomarkers of fibromyalgia, associated with a reduction in salivary flow without changes in HRV and catalase activity after a fatigue exercise protocol. More studies should be carried out in the future to evaluate this hypothesis, in order to find diagnostic biomarkers in fibromyalgia.

Source: Costa AR, Freire A, Parraca JA, Silva V, Tomas-Carus P, Villafaina S. Heart Rate Variability and Salivary Biomarkers Differences between Fibromyalgia and Healthy Participants after an Exercise Fatigue Protocol: An Experimental Study. Diagnostics (Basel). 2022 Sep 14;12(9):2220. doi: 10.3390/diagnostics12092220. PMID: 36140620; PMCID: PMC9497903. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497903/ (Full text)

The Behavior of Muscle Oxygen Saturation, Oxy and Deoxy Hemoglobin during a Fatigue Test in Fibromyalgia

Abstract:

Previous studies have reported that people with fibromyalgia (FM) could suffer from mitochondrial dysfunction. However, the consumption of muscle oxygen during physical exercise has been poorly studied. Therefore, this study aimed to explore the response of muscle oxygen during a fatigue protocol in people with FM and healthy controls (HC). In addition, the peak torque and the total work were assessed.

A total of 31 participants (eighteen were people with fibromyalgia and thirteen were healthy controls) were enrolled in this cross-sectional study. All the participants underwent a fatigue protocol consisting of 20 repetitions at 180°·s−1 of quadriceps flexions and extensions using a Biodex System 3. The muscle oxygen saturation (SmO2), total hemoglobin (THb), deoxygenated hemoglobin (HHb) and oxygenated hemoglobin (O2Hb) values were measured using a portable near-infrared spectroscopy (NIRS) device. Significant differences between people with FM and healthy controls were found at baseline: SmO2 (FM: 56.03 ± 21.36; HC: 77.41 ± 10.82; p = 0.036), O2Hb (FM: 6.69 ± 2.59; HC: 9.37 ± 1.31; p = 0.030) and HHb (FM: 5.20 ± 2.51; HC: 2.73 ± 1.32; p = 0.039); during the fatigue protocol: SmO2 (FM: 48.54 ± 19.96; HC: 58.87 ± 19.72; p = 0.038), O2Hb (FM: 5.70 ± 2.34; HC: 7.06 ± 2.09; p = 0.027) and HHb (FM: 5.69 ± 2.65; HC: 4.81 ± 2.39; p = 0.048); and in the recovery at three min and six min for SmO2, O2Hb and HHb (p < 0.005).

Furthermore, healthy control values of SmO2, O2Hb and HHb have been significantly altered by the fatigue protocol (p < 0.005). In contrast, people with FM did not show any significant alteration in these values. Moreover, significant differences were found in the peak torque at extension (FM: 62.48 ± 24.45; HC: 88.31 ± 23.51; p = 0.033) and flexion (FM: 24.16 ± 11.58; HC: 42.05 ± 9.85; p = 0.010), and the total work performed at leg extension (FM: 1039.78 ± 434.51; HC: 1535.61 ± 474.22; p = 0.007) and flexion (FM: 423.79 ± 239.89; HC: 797.16 ± 194.37; p = 0.005).

Source: Villafaina S, Tomas-Carus P, Silva V, Costa AR, Fernandes O, Parraca JA. The Behavior of Muscle Oxygen Saturation, Oxy and Deoxy Hemoglobin during a Fatigue Test in Fibromyalgia. Biomedicines. 2023 Jan 4;11(1):132. doi: 10.3390/biomedicines11010132. PMID: 36672640; PMCID: PMC9856161. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856161/ (Full text)

An international survey of experiences and attitudes towards pacing using a heart rate monitor for people with myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Background: Myalgic encephalomyelitis (ME) is a complex, multi-system neurological condition. The defining feature of ME is post-exertional malaise (PEM) with over 30 symptoms triggered by physical, cognitive, emotional and social activity.

The cause of PEM is unclear but one area of research using cardio-pulmonary exercise tests show a reduced ventilatory anaerobic threshold (VAT) with repeated tests leading to PEM.

Pacing with heart rate monitoring (HRM) provides feedback to maintain activity intensity below the VAT. There is only one piece of research investigating the use of HRM although a number of guidelines recommend it.

Objective: To identify the experiences and attitudes of people with ME towards HRM.

Methods: A 40 question online survey was devised and released on ME websites, Twitter and Facebook pages. People with ME read the information sheet and followed an online link to the survey. The survey was open for three weeks and all answers were anonymous.

Results: 488 people with ME completed the survey. Most participants were female, 35-50 years and with a reported illness of greater than 5 years. Over 100 types of HR monitor used. Over 30 benefits and over 30 negatives identified. HRM reduced severity of ME and severity and duration of PEM.

Conclusion: Although there are limitations, HRM has many benefits including helping PwME to understand and manage their PEM and support them to increase their activities, including work. There is a need for more research and education of healthcare professionals in the safe use of HRM.

Source: Clague-Baker N, Davenport TE, Madi M, Dickinson K, Leslie K, Bull M, Hilliard N. An international survey of experiences and attitudes towards pacing using a heart rate monitor for people with myalgic encephalomyelitis/chronic fatigue syndrome. Work. 2023 Mar 13. doi: 10.3233/WOR-220512. Epub ahead of print. PMID: 36938766. https://content.iospress.com/articles/work/wor220512 (Full text)

Two symptoms can accurately identify post-exertional malaise in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Background: Post-exertional malaise (PEM) is the hallmark symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) yet its diverse manifestations make it difficult to recognize. Brief instruments for detecting PEM are critical for clinical and scientific progress.

Objective: To develop a clinical prediction rule for PEM.

Method: 49 ME/CFS and 10 healthy, sedentary subjects recruited from the community completed two maximal cardiopulmonary exercise tests (CPETs) separated by 24 hours.

At five different times, subjects reported symptoms which were then classified into 19 categories. The frequency of symptom reports between groups at each time point was compared using Fisher’s exact test.

Receiver operating characteristics (ROC) analysis with area under the curve calculation was used to determine the number of different types of symptom reports that were sufficient to differentiate between ME/CFS and sedentary groups. The optimal number of symptoms was determined where sensitivity and specificity of the types of symptom reports were balanced.

Results: At all timepoints, a maximum of two symptoms was optimal to determine differences between groups. Only one symptom was necessary to optimally differentiate between groups at one week following the second CPET. Fatigue, cognitive dysfunction, lack of positive feelings/mood and decrease in function were consistent predictors of ME/CFS group membership across timepoints.

Conclusion: Inquiring about post-exertional cognitive dysfunction, decline in function, and lack of positive feelings/mood may help identify PEM quickly and accurately. These findings should be validated with a larger sample of patients.

Source: Davenport, Todd E; Chu, Lily; Stevens, Staci R; Stevens, Jared; Snell, Christopher R; Van Ness, J. Mark. Two symptoms can accurately identify post-exertional malaise in myalgic encephalomyelitis/chronic fatigue syndrome. Work. 1 Jan. 2023 : 1 – 15. https://content.iospress.com/articles/work/wor220554 (Full text)

Recovery from Exercise in Persons with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Background and Objectives: Post-exertional malaise (PEM) is the hallmark of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), but there has been little effort to quantitate the duration of PEM symptoms following a known exertional stressor.

Using a Symptom Severity Scale (SSS) that includes nine common symptoms of ME/CFS, we sought to characterize the duration and severity of PEM symptoms following two cardiopulmonary exercise tests separated by 24 h (2-day CPET).

Materials and Methods: Eighty persons with ME/CFS and 64 controls (CTL) underwent a 2-day CPET. ME/CFS subjects met the Canadian Clinical Criteria for diagnosis of ME/CFS; controls were healthy but not participating in regular physical activity. All subjects who met maximal effort criteria on both CPETs were included.

SSS scores were obtained at baseline, immediately prior to both CPETs, the day after the second CPET, and every two days after the CPET-1 for 10 days.

Results: There was a highly significant difference in judged recovery time (ME/CFS = 12.7 ± 1.2 d; CTL = 2.1 ± 0.2 d, mean ± s.e.m., Chi2 = 90.1, p < 0.0001).

The range of ME/CFS patient recovery was 1–64 days, while the range in CTL was 1–10 days; one subject with ME/CFS had not recovered after one year and was not included in the analysis.

Less than 10% of subjects with ME/CFS took more than three weeks to recover. There was no difference in recovery time based on the level of pre-test symptoms prior to CPET-1 (F = 1.12, p = 0.33).

Mean SSS scores at baseline were significantly higher than at pre-CPET-1 (5.70 ± 0.16 vs. 4.02 ± 0.18, p < 0.0001). Pharmacokinetic models showed an extremely prolonged decay of the PEM response (Chi2 > 22, p < 0.0001) to the 2-day CPET.

Conclusions: ME/CFS subjects took an average of about two weeks to recover from a 2-day CPET, whereas sedentary controls needed only two days. These data quantitate the prolonged recovery time in ME/CFS and improve the ability to obtain well-informed consent prior to doing exercise testing in persons with ME/CFS. Quantitative monitoring of PEM symptoms may provide a method to help manage PEM.

Source: Moore GE, Keller BA, Stevens J, Mao X, Stevens SR, Chia JK, Levine SM, Franconi CJ, Hanson MR. Recovery from Exercise in Persons with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Medicina. 2023; 59(3):571. https://doi.org/10.3390/medicina59030571 (Full text)

Urine Metabolomics Exposes Anomalous Recovery after Maximal Exertion in Female ME/CFS Patients

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with unknown etiology or effective treatments. Post-exertional malaise (PEM) is a key symptom that distinguishes ME/CFS patients. Investigating changes in the urine metabolome between ME/CFS patients and healthy subjects following exertion may help us understand PEM.
The aim of this pilot study was to comprehensively characterize the urine metabolomes of eight female healthy sedentary control subjects and ten female ME/CFS patients in response to a maximal cardiopulmonary exercise test (CPET). Each subject provided urine samples at baseline and 24 h post-exercise. A total of 1403 metabolites were detected via LC-MS/MS by Metabolon® including amino acids, carbohydrates, lipids, nucleotides, cofactors and vitamins, xenobiotics, and unknown compounds.
Using a linear mixed effects model, pathway enrichment analysis, topology analysis, and correlations between urine and plasma metabolite levels, significant differences were discovered between controls and ME/CFS patients in many lipid (steroids, acyl carnitines and acyl glycines) and amino acid subpathways (cysteine, methionine, SAM, and taurine; leucine, isoleucine, and valine; polyamine; tryptophan; and urea cycle, arginine and proline).
Our most unanticipated discovery is the lack of changes in the urine metabolome of ME/CFS patients during recovery while significant changes are induced in controls after CPET, potentially demonstrating the lack of adaptation to a severe stress in ME/CFS patients.
Source: Glass KA, Germain A, Huang YV, Hanson MR. Urine Metabolomics Exposes Anomalous Recovery after Maximal Exertion in Female ME/CFS Patients. International Journal of Molecular Sciences. 2023; 24(4):3685. https://doi.org/10.3390/ijms24043685 https://www.mdpi.com/1422-0067/24/4/3685 (Full text available as PDF file)

Stress-Induced Transcriptomic Changes in Females with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Reveal Disrupted Immune Signatures

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, complex multi-organ illness characterized by unexplained debilitating fatigue and post-exertional malaise (PEM), which is defined as a worsening of symptoms following even minor physical or mental exertion. Our study aimed to evaluate transcriptomic changes in ME/CFS female patients undergoing an exercise challenge intended to precipitate PEM.
Our time points (baseline before exercise challenge, the point of maximal exertion, and after an exercise challenge) allowed for the exploration of the transcriptomic response to exercise and recovery in female patients with ME/CFS, as compared to healthy controls (HCs). Under maximal exertion, ME/CFS patients did not show significant changes in gene expression, while HCs demonstrated altered functional gene networks related to signaling and integral functions of their immune cells.
During the recovery period (commonly during onset of PEM), female ME/CFS patients showed dysregulated immune signaling pathways and dysfunctional cellular responses to stress. The unique functional pathways identified provide a foundation for future research efforts into the disease, as well as for potential targeted treatment options.
Source: Van Booven DJ, Gamer J, Joseph A, Perez M, Zarnowski O, Pandya M, Collado F, Klimas N, Oltra E, Nathanson L. Stress-Induced Transcriptomic Changes in Females with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Reveal Disrupted Immune Signatures. International Journal of Molecular Sciences. 2023; 24(3):2698. https://doi.org/10.3390/ijms24032698 https://www.mdpi.com/1422-0067/24/3/2698 (Full text)

The Draft Report by the Institute for Quality and Efficiency in Healthcare Does Not Provide Any Evidence That Graded Exercise Therapy and Cognitive Behavioral Therapy Are Safe and Effective Treatments for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

The German Institute for Quality and Efficiency in Healthcare (IQWiG) recently published its draft report to the government about myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The IQWiG concluded that graded exercise therapy (GET) and cognitive behavioral therapy (CBT) should be recommended in the treatment for mild and moderate ME/CFS based on two CBT and two GET studies. In this article, we reviewed the evidence used by IQWiG to support their claims, because their conclusion is diametrically opposed to the conclusion by the British National Institute for Health and Care Excellence (NICE) in its recently updated ME/CFS guidelines.

Our analysis shows that the trials IQWiG used in support suffered from serious flaws, which included badly designed control groups; relying on subjective primary outcomes in non-blinded studies; alliance and response shift bias, including patients in their trials who did not have the disease under investigation, selective reporting, making extensive endpoint changes and low to very low adherence of treatments.

Our analysis also shows that the report itself used one CBT and one GET study that both examined a different treatment. The report also used a definition of CBT that does not reflect the way it is being used in ME/CFS or was tested in the studies. The report noted that one study used a wrong definition of post-exertional malaise (PEM), the main characteristic of the disease, according to the report. Yet, it ignored the consequence of this, that less than the required minimum percentage of patients had the disease under investigation in that study.

It also ignored the absence of improvement on most of the subjective outcomes, as well as the fact that the IQWiG methods handbook states that one should use objective outcomes and not rely on subjective outcomes in non-blinded studies. The report concluded that both treatments did not lead to objective improvement in the six-minute walk test but then ignored that. The report did not analyze the other objective outcomes of the studies (step test and occupational and benefits status), which showed a null effect.

Finally, the report states that the studies do not report on safety yet assumes that the treatments are safe based on a tendency towards small subjective improvements in fatigue and physical functioning, even though the adherence to the treatments was (very) low and the studies included many patients who did not have the disease under investigation and, consequently, did not suffer from exertion intolerance contrary to ME/CFS patients. At the same time, it ignored and downplayed all the evidence that both treatments are not safe, even when the evidence was produced by a British university.

In conclusion, the studies used by the report do not provide any evidence that CBT and GET are safe and effective. Consequently, the report and the studies do not provide any support for the recommendation to use CBT and GET for ME/CFS or long COVID, which, in many cases, is the same or resembles ME/CFS, after an infection with SARS-CoV-2.

Source: Vink M, Vink-Niese A. The Draft Report by the Institute for Quality and Efficiency in Healthcare Does Not Provide Any Evidence That Graded Exercise Therapy and Cognitive Behavioral Therapy Are Safe and Effective Treatments for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Diseases. 2023 Jan 16;11(1):11. doi: 10.3390/diseases11010011. PMID: 36648876; PMCID: PMC9844345. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844345/ (Full text)

Muscle sodium content in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Muscle fatigue and pain are key symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Although the pathophysiology is not yet fully understood, there is ample evidence for hypoperfusion which may result in electrolyte imbalance and sodium overload in muscles. Therefore, the aim of this study was to assess levels of sodium content in muscles of patients with ME/CFS and to compare these to healthy controls.

Methods: Six female patients with ME/CFS and six age, BMI and sex matched controls underwent 23Na-MRI of the left lower leg using a clinical 3T MR scanner before and after 3 min of plantar flexion exercise. Sodium reference phantoms with solutions of 10, 20, 30 and 40 mmol/L NaCl were used for quantification. Muscle sodium content over 40 min was measured using a dedicated plugin in the open-source DICOM viewer Horos. Handgrip strength was measured and correlated with sodium content.

Results: Baseline tissue sodium content was higher in all 5 lower leg muscle compartments in ME/CFS compared to controls. Within the anterior extensor muscle compartment, the highest difference in baseline muscle sodium content between ME/CFS and controls was found (mean ± SD; 12.20 ± 1.66 mM in ME/CFS versus 9.38 ± 0.71 mM in controls, p = 0.0034). Directly after exercise, tissue sodium content increased in gastrocnemius and triceps surae muscles with + 30% in ME/CFS (p = 0.0005) and + 24% in controls (p = 0.0007) in the medial gastrocnemius muscle but not in the extensor muscles which were not exercised. Compared to baseline, the increase of sodium content in medial gastrocnemius muscle was stronger in ME/CFS than in controls with + 30% versus + 17% to baseline at 12 min (p = 0.0326) and + 29% versus + 16% to baseline at 15 min (p = 0.0265). Patients had reduced average handgrip strength which was associated with increased average muscle tissue sodium content (p = 0.0319, R2 = 0.3832).

Conclusion: Muscle sodium content before and after exercise was higher in ME/CFS than in healthy controls. Furthermore, our findings indicate an inverse correlation between muscle sodium content and handgrip strength. These findings provide evidence that sodium overload may play a role in the pathophysiology of ME/CFS and may allow for potential therapeutic targeting.

Source: Petter E, Scheibenbogen C, Linz P, Stehning C, Wirth K, Kuehne T, Kelm M. Muscle sodium content in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Transl Med. 2022 Dec 9;20(1):580. doi: 10.1186/s12967-022-03616-z. PMID: 36494667. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-022-03616-z (Full text)

Impaired pulmonary and muscle function during moderate exercise in female patients recovered from SARS-CoV-2

Abstract:

This study aimed to assess pulmonary and muscle dysfunction by analyzing the slow component of oxygen uptake (VO2SC), and mechanical and ventilatory efficiency in adult women recovered from the severe acute respiratory syndrome coronavirus type II (SARS-CoV-2) during a constant load test. 32 women (N = 17 patients with SARS-CoV-2; N = 15 control group) performed two cardiopulmonary exercise tests (CPX) on a cycle ergometer.

In the first test, the participants performed incremental CPX until extenuation. In the second test the participants performed a 10-min CPX at a constant load intensity (watts) corresponding to the first ventilatory threshold. There was a 48-72 h rest period between the two tests. There was a significant increase in the VO2SC in the patients recovered from SARS-CoV-2 (160.4 ± 60 mL min-1) in comparison with the healthy participants (59.6 ± 65 mL min-1) (P < 0.001).

Mechanical efficiency significantly decreased in patients recovered from SARS-CoV-2 compared to the control group (P = 0.04). Ventilatory inefficiency significantly increased in the patients recovered from SARS-CoV-2 compared with the control group (P < 0.001). Adult women recovered from SARS-CoV-2 infection have important pulmonary and muscular dysfunction and fatigue which contributes to increasing the VO2SC and reducing mechanical and ventilatory efficiency during mild-moderate exercise at a constant load.

Source: Pleguezuelos E, Del Carmen A, Moreno E, Ortega P, Robles A, Serra-Prat M, Miravitlles M, Yebenes JC, Garnacho-Castaño MV. Impaired pulmonary and muscle function during moderate exercise in female patients recovered from SARS-CoV-2. Sci Rep. 2022 Dec 4;12(1):20943. doi: 10.1038/s41598-022-24941-9. PMID: 36464697.  https://www.nature.com/articles/s41598-022-24941-9 (Full text)