Cardiac Dimensions and Function Are Not Altered among Females with the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition associated with several negative health outcomes. A hallmark of ME/CFS is decreased exercise capacity and often profound exercise intolerance. The causes of ME/CSF and its related symptoms are unknown, but there are indications of a dysregulated metabolism with impaired glycolytic vs oxidative energy balance. In line with this, we recently demonstrated abnormal lactate accumulation among ME/CFS patients compared with healthy controls after exercise testing. Here we examined if cardiac dimensions and function were altered in ME/CFS, as this could lead to increased lactate production.

Methods: We studied 16 female ME/CFS patients and 10 healthy controls with supine transthoracic echocardiography, and we assessed cardiac dimensions and function by conventional echocardiographic and Doppler analysis as well as novel tissue Doppler and strain variables.

Results: A detailed analyses of key variables of cardiac dimensions and cardiac function revealed no significant differences between the two study groups.

Conclusion: In this cohort of well-described ME/CFS patients, we found no significant differences in echocardiographic variables characterizing cardiac dimensions and function compared with healthy controls.

Source: Iversen PO, von Lueder TG, Kardel KR, Lien K. Cardiac Dimensions and Function Are Not Altered among Females with the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Healthcare (Basel). 2020 Oct 16;8(4):E406. doi: 10.3390/healthcare8040406. PMID: 33081294. https://pubmed.ncbi.nlm.nih.gov/33081294/

Peripheral endothelial dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

AIMS: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multisystem disease. Evidence for disturbed vascular regulation comes from various studies showing cerebral hypoperfusion and orthostatic intolerance. The peripheral endothelial dysfunction (ED) has not been sufficiently investigated in patients with ME/CFS. The aim of the present study was to examine peripheral endothelial function in patients with ME/CFS.

METHODS AND RESULTS: Thirty-five patients [median age 40 (range 18-70) years, mean body mass index 23.8 ± 4.2 kg/m2 , 31% male] with ME/CFS were studied for peripheral endothelial function assessed by peripheral arterial tonometry (EndoPAT2000). Clinical diagnosis of ME/CFS was based on Canadian Criteria. Nine of these patients with elevated antibodies against β2-adrenergic receptor underwent immunoadsorption, and endothelial function was measured at baseline and 3, 6, and 12 months follow-up. ED was defined by reactive hyperaemia index ≤1.81. Twenty healthy subjects of similar age and body mass index were used as a control group.

Peripheral ED was found in 18 of 35 patients (51%) with ME/CFS and in 4 healthy subjects (20%, P < 0.05). Patients with ED, in contrast to patients with normal endothelial function, reported more severe disease according to Bell score (31 ± 12 vs. 40 ± 16, P = 0.04), as well as more severe fatigue-related symptoms (8.62 ± 0.87 vs. 7.75 ± 1.40, P = 0.04) including a higher demand for breaks [9.0 (interquartile range 7.0-10.0) vs. 7.5 (interquartile range 6.0-9.25), P = 0.04]. Peripheral ED showed correlations with more severe immune-associated symptoms (r = -0.41, P = 0.026), such as sore throat (r = -0.38, P = 0.038) and painful lymph nodes (r = -0.37, P = 0.042), as well as more severe disease according to Bell score (r = 0.41, P = 0.008) and symptom score (r = -0.59, P = 0.005). There were no differences between the patient group with ED and the patient group with normal endothelial function regarding demographic, metabolic, and laboratory parameters.

Further, there was no difference in soluble vascular cell adhesion molecule and soluble intercellular adhesion molecule levels. At baseline, peripheral ED was observed in six patients who underwent immunoadsorption. After 12 months, endothelial function had improved in five of these six patients (reactive hyperaemia index 1.58 ± 0.15 vs. 2.02 ± 0.46, P = 0.06).

CONCLUSIONS: Peripheral ED is frequent in patients with ME/CFS and associated with disease severity and severity of immune symptoms. As ED is a risk factor for cardiovascular disease, it is important to elucidate if peripheral ED is associated with increased cardiovascular morbidity and mortality in ME/CFS.

© 2020 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

Source: Scherbakov N, Szklarski M, Hartwig J, Sotzny F, Lorenz S, Meyer A, Grabowski P, Doehner W, Scheibenbogen C. Peripheral endothelial dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome. ESC Heart Fail. 2020 Mar 10. doi: 10.1002/ehf2.12633. [Epub ahead of print] https://onlinelibrary.wiley.com/doi/full/10.1002/ehf2.12633 (Full article)

Reduced heart rate variability predicts fatigue severity in individuals with chronic fatigue syndrome/myalgic encephalomyelitis

Abstract:

BACKGROUND: Heart rate variability (HRV) is an objective, non-invasive tool to assessing autonomic dysfunction in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). People with CFS/ME tend to have lower HRV; however, in the literature there are only a few previous studies (most of them inconclusive) on their association with illness-related complaints. To address this issue, we assessed the value of different diurnal HRV parameters as potential biomarker in CFS/ME and also investigated the relationship between these HRV indices and self-reported symptoms in individuals with CFS/ME.

METHODS: In this case-control study, 45 female patients who met the 1994 CDC/Fukuda definition for CFS/ME and 25 age- and gender-matched healthy controls underwent HRV recording-resting state tests. The intervals between consecutive heartbeats (RR) were continuously recorded over three 5-min periods. Time- and frequency-domain analyses were applied to estimate HRV variables. Demographic and clinical features, and self-reported symptom measures were also recorded.

RESULTS: CFS/ME patients showed significantly higher scores in all symptom questionnaires (p < 0.001), decreased RR intervals (p < 0.01), and decreased HRV time- and frequency-domain parameters (p < 0.005), except for the LF/HF ratio than in the healthy controls. Overall, the correlation analysis reached significant associations between the questionnaires scores and HRV time- and frequency-domain measurements (p < 0.05). Furthermore, separate linear regression analyses showed significant relationships between self-reported fatigue symptoms and mean RR (p = 0.005), RMSSD (p = 0.0268) and HFnu indices (p = 0.0067) in CFS/ME patients, but not in healthy controls.

CONCLUSIONS: Our findings suggest that ANS dysfunction presenting as increased sympathetic hyperactivity may contribute to fatigue severity in individuals with ME/CFS. Further studies comparing short- and long-term HRV recording and self-reported outcome measures with previous studies in larger CFS/ME cohorts are urgently warranted.

Source: Escorihuela RM, Capdevila L, Castro JR, Zaragozà MC, Maurel S, Alegre J, Castro-Marrero J. Reduced heart rate variability predicts fatigue severity in individuals with chronic fatigue syndrome/myalgic encephalomyelitis. J Transl Med. 2020 Jan 6;18(1):4. doi: 10.1186/s12967-019-02184-z. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943898/ (Full article)

The Abnormal Cardiac Index and Stroke Volume Index Changes During a Normal Tilt Table Test in ME/CFS Patients Compared to Healthy Volunteers, are Not Related to Deconditioning

Abstract:

1.1 Background. A small study in ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome) patients undergoing tilt testing, showed that, despite a normal tilt test, stroke volumes and cardiac output were lower than in healthy volunteers. Moreover, it was suggested that this difference was related to deconditioning of patients. Aim of the study. We performed table testing in 150 ME/CFS patients. Stroke volumes and cardiac output were related to the severity of the disease.

1.2 Methods and results. In the patients the severity of the disease was clinically evaluated according to the ME criteria and scored as mild, moderate or severe disease. In a subgroup of 109 patients this clinical diagnosis was confirmed by the physical functioning score of the Rand-36 questionnaire. Significantly lower physical functioning scores (indicating worse functioning) were observed in the more severely affected patients. Stroke Volume Index (SVI) and Cardiac Index (CI) were measured by suprasternal aortic Doppler imaging in the supine position, prior to the tilt, and twice during the tilt. Thirty-seven healthy volunteers underwent the same tilt protocol. In all patients and all healthy volunteers, a normal heart rate and blood pressure response was observed during the tilt. The decreases in SVI and CI during the tilt was significantly larger in patients compared to the SVI and CI decrease in HV. The decrease in SVI and CI were similar and not significantly different between the mild, moderate, and severe ME groups.

1.3 Conclusions. During a normal tilt table test decreases in SVI and CI decrease are significantly greater in ME/CFS patients than in HV, consistent with previous work. The absence of differences between patients with mild, moderate, and severe ME/CFS suggests that the decreases in stroke volumes and cardiac output are not related to deconditioning. Other factors like decreased blood volumes and autonomic dysfunction may cause this difference in the hemodynamic response between ME/CFS patients and HV.

3. Abbreviations

BMI : Body Mass Index

BSA : Body Surface Area

CFS : Chronic Fatigue Syndrome

CI : Cardiac Index

DBP : Diastolic Blood Pressure

HR : Heart Rate

HUT : Head-Up Tilt Test

HV : Healthy Volunteers

IOM : Institute of Medicine

MAP : Mean Blood Pressure

ME : Myalgic Encephalomyelitis

NMH : Neurally Mediated Hypotension

Normal BPHR : normal Blood Pressure and Heart Rate Response During HUT

OI : Orthostatic Intolerance

R36 Phys Funct : Rand-36 Physical Functioning Score

SBP : Systolic Blood Pressure

SVI : Stroke Volume Index

SVRI : Systemic Vascular Resistance Index

VTI : Time-Velocity Integral

Source: van Campen CMC, Visser FC (2018) The Abnormal Cardiac Index and Stroke Volume Index Changes During a Normal Tilt Table Test in ME/CFS Patients Compared to Healthy Volunteers, are Not Related to Deconditioning. J Thrombo Cir: JTC -107. DOI: 10.29011/ JTC -107. 000007 https://www.gavinpublishers.com/articles/Research-Article/Journal-of-Thrombosis-and-Circulation/The-Abnormal-Cardiac-Index-and-Stroke-Volume-Index-Changes-During-a-Normal-Tilt-Table-Test-in-ME-CFS-Patients-Compared-to-Healthy-Volunteers-are-Not-Related-to-Deconditioning (Full article)

Cerebral blood flow and heart rate variability predict fatigue severity in patients with chronic fatigue syndrome

Abstract:

Prolonged, disabling fatigue is the hallmark of chronic fatigue syndrome (CFS). Previous neuroimaging studies have provided evidence for nervous system involvement in CFS etiology, including perturbations in brain structure/function. In this arterial spin labeling (ASL) MRI study, we examined variability in cerebral blood flow (CBFV) and heart rate (HRV) in 28 women: 14 with CFS and 14 healthy controls. We hypothesized that CBFV would be reduced in individuals with CFS compared to healthy controls, and that increased CBFV and HRV would be associated with lower levels of fatigue in affected individuals.

Our results provided support for these hypotheses. Although no group differences in CBFV or HRV were detected, greater CBFV and more HRV power were both associated with lower fatigue symptom severity in individuals with CFS. Exploratory statistical analyses suggested that protective effects of high CBFV were greatest in individuals with low HRV. We also found novel evidence of bidirectional association between the very high frequency (VHF) band of HRV and CBFV. Taken together, the results of this study suggest that CBFV and HRV are potentially important measures of adaptive capacity in chronic illnesses like CFS. Future studies should address these measures as potential therapeutic targets to improve outcomes and reduce symptom severity in individuals with CFS.

Source: Boissoneault J, Letzen J, Robinson M, Staud R. Cerebral blood flow and heart rate variability predict fatigue severity in patients with chronic fatigue syndrome. Brain Imaging Behav. 2018 May 31. doi: 10.1007/s11682-018-9897-x. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/29855991

Cardiac sympathetic innervation associates with autonomic dysfunction in chronic fatigue syndrome – a pilot study

Despite hemodynamic abnormalities being well documented in chronic fatigue syndrome (CFS), it remains unclear the nature of the underlying autonomic nervous system problems that underpin these findings. Studies performed in subgroups of those with CFS suggest cardiac sympathetic denervation.

Meta-iodo-benzylguanidine (MIBG) imaging provides a quantitative measure of cardiac sympathetic innervation. Clinically, cardiac MIBG scanning is used to estimate local myocardial sympathetic nerve damage in heart disease and dysautonomia, particularly abnormalities arising due to sympathetic innervation [1,2]. In this study, we explored potential mechanisms that underpin the autonomic abnormalities seen in CFS using I125 MIBG participants that fulfilled Fukuda diagnostic criteria for CFS [3]. Participants were excluded if screened positive for a major depressive episode (Structured Clinical Interview for the Diagnostic and Statistical Manual for Mental Disorders). Fatigue was measured using the Fatigue Impact Scale (FIS).

Read the rest of this article HERE.

Source: Petrides G, Zalewski P, McCulloch D, Maclachlan L, Finkelmeyer A, Hodgson T, Blamire A, Newton JL. Cardiac sympathetic innervation associates with autonomic dysfunction in chronic fatigue syndrome – a pilot study. Fatigue. 2017 May 4;5(3):184-186. doi: 10.1080/21641846.2017.1322235. eCollection 2017. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5942146/ (Full article)

The etiologic relation between disequilibrium and orthostatic intolerance in patients with myalgic encephalomyelitis (chronic fatigue syndrome)

Abstract:

BACKGROUND: Orthostatic intolerance (OI) causes a marked reduction in the activities of daily living in patients with myalgic encephalomyelitis (ME) or chronic fatigue syndrome. Most symptoms of OI are thought to be related to cerebral hypo-perfusion and sympathetic activation. Because postural stability is an essential element of orthostatic tolerance, disequilibrium may be involved in the etiology of OI.

METHODS AND RESULTS: The study comprised 44 patients with ME (men, 11 and women, 33; mean age, 37±9 years), who underwent neurological examinations and 10-min standing and sitting tests. Symptoms of OI were detected in 40 (91%) patients and those of sitting intolerance were detected in 30 (68%). Among the 40 patients with OI, disequilibrium with instability on standing with their feet together and eyes shut, was detected in 13 (32.5%) patients and hemodynamic dysfunction during the standing test was detected in 19 (47.5%); both of these were detected in 7 (17.5%) patients. Compared with 31 patients without disequilibrium, 13 (30%) patients with disequilibrium more prevalently reported symptoms during both standing (100% vs. 87%, p=0.43) and sitting (92% vs. 58%, p=0.06) tests. Several (46% vs. 3%, p<0.01) patients failed to complete the 10-min standing test, and some (15% vs. 0%, p=0.15) failed to complete the 10-min sitting test. Among the seven patients with both hemodynamic dysfunction during the standing test and disequilibrium, three (43%) failed to complete the standing test. Among the 6 patients with disequilibrium only, 3 (50%) failed while among the 12 patients with hemodynamic dysfunction only, including 8 patients with postural orthostatic tachycardia, none (0%, p=0.02) failed.

CONCLUSIONS: Patients with ME and disequilibrium reported not only OI but also sitting intolerance. Disequilibrium should be recognized as an important cause of OI and appears to be a more influential cause for OI than postural orthostatic tachycardia in patients with ME.

Copyright © 2018 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

Source: Miwa K, Inoue Y. The etiologic relation between disequilibrium and orthostatic intolerance in patients with myalgic encephalomyelitis (chronic fatigue syndrome). J Cardiol. 2018 Mar 24. pii: S0914-5087(18)30058-3. doi: 10.1016/j.jjcc.2018.02.010. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/29588088

Comment by ME Research UK: Reduced cardiac volumes in chronic fatigue syndrome associate with plasma volume but not length of disease: a cohort study

Reprinted with the kind permission of ME Research UK.

Authors

Newton JL, Finkelmeyer A, Petrides G, Frith J, Hodgson T, Maclachlan L, MacGowan G and Blamire AM

Institution

Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne Hospitals NHS; Newcastle Magnetic Resonance Centre, Newcastle upon Tyne, UK

Published abstract

Objectives

To explore potential mechanisms that underpin the cardiac abnormalities seen in chronic fatigue syndrome (CFS) using non-invasive cardiac impedance, red cell mass and plasma volume measurements.

Methods

Cardiac MR (MR) examinations were performed using 3 T Philips Intera Achieva scanner (Best, NL) in participants with CFS (Fukuda; n=47) and matched case-by-case controls. Total volume (TV), red cell volume (RCV) and plasma volume (PV) measurements were performed (41 CFS and 10 controls) using the indicator dilution technique using simultaneous 51-chromium labelling of red blood cells and 125-iodine labelling of serum albumin.

Results

The CFS group length of history (mean±SD) was 14±10 years. Patients with CFS had significantly reduced end-systolic and end-diastolic volumes together with reduced end-diastolic wall masses (all p<0.0001). Mean±SD RCV was 1565±443 mL with 26/41 (63%) having values below 95% of expected. PV was 2659±529 mL with 13/41 (32%) <95% expected. There were strong positive correlations between TV, RCV and PV and cardiac end-diastolic wall mass (all p<0.0001; r2=0.5). Increasing fatigue severity correlated negatively with lower PV (p=0.04; r2=0.2). There were no relationships between any MR or volume measurements and length of history, suggesting that deconditioning was unlikely to be the cause of these abnormalities.

Conclusions

This study confirms an association between reduced cardiac volumes and blood volume in CFS. Lack of relationship between length of disease, cardiac and plasma volumes suggests findings are not secondary to deconditioning. The relationship between plasma volume and severity of fatigue symptoms suggests a potential therapeutic target in CFS.

Publication

Newton et al, Open Heart, 2016 Jun 24; 3(1):e000381

Funding

Medical Research Council, ME Research UK

 

Comment by ME Research UK

Over the years, a number of reports in the scientific literature have pointed to the presence of abnormalities of heart (cardiac) function in ME/CFS. For example, a study in 2006 found that ME/CFS patients had relatively short QT intervals (measures of the heart’s electrical cycle) compared with healthy people (read more). Also, in 2009, Japanese researchers reported cardiac dysfunction with low cardiac output in some oriental patients (read more), and another investigation found that cardiac function was diminished (read more).

Alongside these reports, ME Research UK-funded investigations by Prof Julia Newton, Dr Kieren Hollingsworth and colleagues at Newcastle University have also throw up some intriguing findings concerning the function of the heart in ME/CFS. For example, they have shown that ‘bioenergetic abnormalities’ could be found both in heart muscle and in the muscles of the skeleton, with a correlation between the two suggesting the existence of linked underlying mechanisms (read more). In the same investigation, they found that the hearts of the ME/CFS patients had to work harder during prolonged standing than in healthy people. The research group has also looked at the function of the heart using cardiac MRI tagging to identify defects that are not yet clinically apparent. One of their main findings has been a dramatic increase in ‘residual torsion’ in patients compared with controls. This is a measure of the efficiency of the release of torsion and strain during the relaxation phase of the heartbeat, and ME/CFS patients had 200% more residual torsion than healthy people, indicating that their heart muscle was taking longer to relax. Also, the left ventricular mass (the thickness of the heart wall at the ventricle) was reduced compared with controls; and cardiac output (the output of blood by the heart per minute) was lower (read more).

The Newcastle researchers have been continuing their investigations, and their latest report has just been published in the journal Open Heart (read more). It describes work to confirm these previous findings in a larger group of new patients and controls, and extend them to include cardiac output and blood volume. In the experiments, cardiac magnetic resonance examinations were performed in 47 patients with ME/CFS who had been ill for 14 years on average and 47 case-matched controls, and blood volume measurements in 41 CFS and 10 controls. Patients with a diagnosis of depression were specifically excluded from the study so that depression could be ruled out as a potential, if unlikely, cause of the abnormalities.

The results were fascinating. Compared with healthy controls, stroke volume(the amount of blood pumped by the left ventricle in one contraction) was 23% lower in the ME/CFS patients; end-diastolic volumes were 25% lower; end-systolic volumes were 29% lower; and end-diastolic wall masses were 26% lower (all p<0.0001). In essence, these findings confirm, in a larger and different group of patients, the reductions in cardiac volume observed previously in ME/CFS patients in Newcastle.

The total volume of blood (plasma and red cells) was 4% lower in the ME/CFS group compared with controls, though this difference was not statistically significant. In 63% of the patients, however, the volume of red blood cells was below 95% of the expected levels for healthy people. Also, there were strong positive correlations between blood volume measurements and cardiac end-diastolic wall mass, and a weak relationship between plasma volume and fatigue severity. Importantly, the length of illness was not related to any cardiac magnetic resonance or volume measurements, suggesting that deconditioning (which would be greater the longer a person was ill) was unlikely to be the cause of these abnormalities.

The finding that red cell volume was low is intriguing, and it may be that blood volume plays at least a part in the symptoms experienced by ME/CFS patients. One intriguing possibility alluded to by the researchers is that the abnormalities detected in this study, particularly the reduction in end-diastolic blood volume,  may be due to problems with venous compliance (see diagram above), as nearly two-thirds of the blood in the systemic circulation is stored in the venous system and compliance is controlled by the autonomic nervous system which is also affected in ME/CFS. In fact, low total blood volume has been proposed as part of the disease process in subgroups of ME/CFS patients before. One investigation in 2002 found a 9% lower blood volume in ME/CFS patients than in controls (read more). A further study in 2009 showed that the reductions in cardiac output and end-diastolic volume in ME/CFS could be entirely accounted for by a reduction in the total blood volume (read more), and an accompanying editorial pointed out that the results did not imply heart disease, but rather pointed to “circulatory impairment” (read more).

Overall, these findings using state-of-the art MRI confirm the presence of cardiac abnormalities in people with ME/CFS. It remains unknown, however, whether these are caused by ME/CFS and its consequences per se or whether, for instance, a (pre-existing) reduced cardiac volume may make people more vulnerable to the development of the illness. As regards low blood volume, there is anecdotal evidence that the symptoms of ME/CFS improve in some patients after treatment with intravenous fluid (although the procedure is not without drawbacks and risks), and the team in Newcastle intend to explore interventions to restore fluid volume in ME/CFS patients in further studies.

_________________

ME Research UK commissions and funds high-quality scientific (biomedical) investigation into ME/CFS. 

 

Comment by ME Research UK: Elevated brain natriuretic peptide levels in chronic fatigue syndrome associate with cardiac dysfunction: a case control study

Reprinted with the kind permission of ME Research UK.

Publication

Tomas et al, Open Heart, 2017 Dec 27; 4(2):e000697

 

Comment by ME Research UK

An increasing amount of research has revealed heart abnormalities in patients with ME/CFS. For example, people with the illness have been found to have a short QT interval (a measure of the electrical activity of the heart) and a reduced cardiac output (the amount of blood pumped by the heart per minute). These changes may occur before any symptoms are apparent.

Much of the recent work on cardiac dysfunction in ME/CFS has been carried out by Prof. Julia Newton and her team at Newcastle University, including studies funded by ME Research UK.

In 2012, they used magnetic resonance imaging and cardiac tagging technology to asses a group of ME/CFS patients, and found that several measures of the heart were lower in patients than in healthy control subjects:

  • left ventricular mass (the thickness of the wall of the left ventricle, the main pumping chamber of the heart),
  • stroke volume (the amount of blood pumped by the left ventricle in one contraction),
  • cardiac output, and
  • end-diastolic volume (the volume of blood in each ventricle after they have refilled).

Then, in 2016, they repeated some of these assessments along with measures of blood volume. The total volume of blood (plasma plus red cells) was slightly less in ME/CFS patients than in controls, but there was a strong association between blood volume and cardiac end-diastolic wall mass.

Continuing their work in this area, the team has recently published a paper in the journal Open Heart looking at levels of brain natriuretic peptide in ME/CFS, and correlating these with measures of cardiac dysfunction.

Despite its name, brain natriuretic peptide (or BNP) is a hormone that is actually secreted by the muscle cells of the heart, and is produced when the ventricles are overstretched to accommodate an increase in blood volume.

Circulating BNP causes a decrease in blood pressure and in cardiac output, and has found use clinically as a diagnostic and prognostic marker of heart failure.

In their current study, the investigators recruited 42 patients with ME/CFS and no other illness, as well as 10 sedentary control subjects matched for age and sex.

The participants’ hearts were examined using magnetic resonance techniques to provide a number of measures of cardiac function, including cardiac volumes at the end of systole (after the ventricles have contracted and pumped out their blood) and at the end of diastole (when the ventricles are relaxed and have refilled with blood).

In addition, blood samples were taken, and plasma BNP levels were measured using an enzyme immunoassay.

The first important finding was that BNP levels were significantly higher in ME/CFS patients than in sedentary control subjects, with mean levels of approximately 500 versus 300 pg/mL, respectively.

Furthermore, both end-systolic and end-diastolic cardiac volumes were significantly lower among patients with high BNP levels (defined as being greater than 400 pg/mL) than in those with low BNP levels.

BNP tends to be a sign of cardiac volume overload, so this association is not what one would normally expect to see. One explanation suggested by the researchers is that the high BNP is causing an excessive production of urine, which reduces the total volume of circulating blood (as seen in their earlier study), leading to a smaller cardiac volume.

It is important to note that none of these measures were related to the patients’ duration of ME/CFS, indicating that the results are unlikely to be due to deconditioning (i.e. they were not the result of the heart adapting to less physical activity).

What might these results mean to patients? One possibility put forward by the investigators is that measurement of BNP levels may be a convenient way by which to identify those ME/CFS patients with cardiac abnormalities who might benefit from specific treatments, although additional studies would be needed to confirm this.

This approach may also be valuable in identifying a specific cardiac subgroup of ME/CFS patients, and better understand the diverse nature of this illness.

_________________

ME Research UK commissions and funds high-quality scientific (biomedical) investigation into ME/CFS. 

Cardiovascular characteristics of chronic fatigue syndrome

Abstract:

Patients with chronic fatigue syndrome (CFS) commonly exhibit orthostatic intolerance. Abnormal sympathetic predominance in the autonomic cardiovascular response to gravitational stimuli was previously described in numerous studies. The aim of the current study was to describe cardiological and clinical characteristics of Italian patients with CFS. All of the patients were of Caucasian ethnicity and had been referred to our center, the Cardiology Department of the University Hospital of Pavia (Pavia, Italy) with suspected CFS. A total of 44 patients with suspected CFS were included in the present study and the diagnosis was confirmed in 19 patients according to recent clinical guidelines.

The characteristics at baseline of the population confirm findings from various previous reports regarding the prevalence in females with a female to male ratio of 4:1, the age of onset of the pathology and the presence of previous infection by the Epstein-Barr virus, cytomegalovirus and other human herpesviruses. Despite the current data indicating that the majority of the cardiological parameters investigated are not significantly different in patients with and without CFS, a significant association between the disease and low levels of blood pressure was identified. Other pilot studies revealed a higher prevalence of hypotension and orthostatic intolerance in patients with CFS. Furthermore, many of the CFS symptoms, including fatigue, vertigo, decreased concentration, tremors and nausea, may be explained by hypotension.

Source: Bozzini S, Albergati A, Capelli E, Lorusso L, Gazzaruso C, Pelissero G, Falcone C. Cardiovascular characteristics of chronic fatigue syndrome. Biomed Rep. 2018 Jan;8(1):26-30. doi: 10.3892/br.2017.1024. Epub 2017 Nov 28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772628/ (Full article)