A laboratory approach for characterizing chronic fatigue: what does metabolomics tell us?

Abstract:

INTRODUCTION: Manifestations of fatigue range from chronic fatigue up to a severe syndrome and myalgic encephalomyelitis. Fatigue grossly affects the functional status and quality of life of affected individuals, prompting the World Health Organization to recognize it as a chronic non-communicable condition.

OBJECTIVES: Here, we explore the potential of urinary metabolite information to complement clinical criteria of fatigue, providing an avenue towards an objective measure of fatigue in patients presenting with the full spectrum of fatigue levels.

METHODS: The experimental group consisted of 578 chronic fatigue female patients. The measurement design was composed of (1) existing clinical fatigue scales, (2) a hepatic detoxification challenge test, and (3) untargeted proton nuclear magnetic resonance (1H-NMR) procedure to generate metabolomics data. Data analysed via an in-house Matlab script that combines functions from a Statistics and a PLS Toolbox.

RESULTS: Multivariate analysis of the original 459 profiled 1H-NMR bins for the low (control) and high (patient) fatigue groups indicated complete separation following the detoxification experimental challenge. Important bins identified from the 1H-NMR spectra provided quantitative metabolite information on the detoxification challenge for the fatigue groups.

CONCLUSIONS: Untargeted 1H-NMR metabolomics proved its applicability as a global profiling tool to reveal the impact of toxicological interventions in chronic fatigue patients. No clear potential biomarker emerged from this study, but the quantitative profile of the phase II biotransformation products provide a practical visible effect directing to up-regulation of crucial phase II enzyme systems in the high fatigue group in response to a high xenobiotic-load.

Source: Erasmus E, Mason S, van Reenen M, Steffens FE, Vorster BC, Reinecke CJ. A laboratory approach for characterizing chronic fatigue: what does metabolomics tell us? Metabolomics. 2019 Nov 27;15(12):158. doi: 10.1007/s11306-019-1620-4. https://www.ncbi.nlm.nih.gov/pubmed/31776682

Identification of actin network proteins, talin-1 and filamin-A, in circulating extracellular vesicles as blood biomarkers for human myalgic encephalomyelitis/ chronic fatigue syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious, debilitating disorder with a wide spectrum of symptoms, including pain, depression, and neurocognitive deterioration. Over 17 million people around the world have ME/CFS, predominantly women with peak onset at 30-50 years. Given the wide spectrum of symptoms and unclear etiology, specific biomarkers for diagnosis and stratification of ME/CFS are lacking. Here we show that actin network proteins in circulating extracellular vesicles (EVs) offer specific non-invasive biomarkers for ME/CFS.

We found that circulating EVs were significantly increased in ME/CFS patients correlating to C-reactive protein, as well as biological antioxidant potential. Area under the receiver operating characteristic curve for circulating EVs was 0.80, allowing correct diagnosis in 90-94% of ME/CFS cases. From two independent proteomic analyses using circulating EVs from ME/CFS, healthy controls, idiopathic chronic fatigue, and depression, proteins identified from ME/CFS patients are involved in focal adhesion, actin skeletal regulation, PI3K-Akt signaling pathway, and Epstein-Barr virus infection. In particular, talin-1, filamin-A, and 14-3-3 family proteins were the most abundant proteins, representing highly specific ME/CFS biomarkers.

Our results identified circulating EV number and EV-specific proteins as novel biomarkers for diagnosing ME/CFS, providing important information on the pathogenic mechanisms of ME/CFS.

Copyright © 2019. Published by Elsevier Inc.

Source: Eguchi A, Fukuda S, Kuratsune H, Nojima J, Nakatomi Y, Watanabe Y, Feldstein AE. Identification of actin network proteins, talin-1 and filamin-A, in circulating extracellular vesicles as blood biomarkers for human myalgic encephalomyelitis/ chronic fatigue syndrome. Brain Behav Immun. 2019 Nov 20. pii: S0889-1591(19)30762-7. doi: 10.1016/j.bbi.2019.11.015. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/31759091

Retinal nerve fiber layer thinning in chronic fatigue syndrome as a possible ocular biomarker of underlying glymphatic system dysfunction

In a recent article published in Medical Hypotheses, my colleague and I speculated that glymphatic dysfunction, causing toxic build up within the central nervous system, may be responsible for at least some cases of chronic fatigue syndrome (CFS) [1]. We further postulated that cerebrospinal fluid diversion such as lumboperitoneal shunting may be beneficial to this subgroup of patients by restoring glymphatic transport and waste removal from the brain. In this context, it would be helpful to have a predictive biomarker that can identify CFS patients who are good candidates for this specific treatment. For reasons discussed below, I believe that retinal nerve fiber layer (RNFL) thinning may be a sign of underlying glymphatic system dysfunction in neurodegenerative diseases that result from protein toxicity.

Read the rest of this article here.

A systematic review of cytokines in chronic fatigue syndrome/myalgic encephalomyelitis/systemic exertion intolerance disease (CFS/ME/SEID)

Abstract:

BACKGROUND: Cytokines in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis/Systemic Exertion Intolerance Disease (CFS/ME/SEID) patients compared with healthy controls have been extensively studied. However, the evidence regarding whether a baseline difference between CFS/ME/SEID patients and the normal population remains unclear. The aim of this study was to conduct a systematic review of the literature regarding cytokines in CFS/ME/SEID and whether there is a significant difference in cytokine levels between this patient group and the normal population.

METHODS: Pubmed, Scopus, Medline (EBSCOHost), and EMBASE databases were searched to source relevant studies for CFS/ME/SEID. The review included any studies examining cytokines in CFS/ME/SEID patients compared with healthy controls. Results of the literature search were summarised according to aspects of their study design and outcome measures, namely, cytokines. Quality assessment was also completed to summarise the level of evidence available.

RESULTS: A total of 16,702 publications were returned using our search terms. After screening of papers according to our inclusion and exclusion criteria, 15 studies were included in the review. All the included studies were observational case control studies. Ten of the studies identified measured serum cytokines in CFS/ME/SEID patients, and four measured cytokines in other physiological fluids of CFS/ME/SEID patients. The overall quality assessment revealed most papers included in this systematic review to be consistent.

CONCLUSIONS: Despite the availability of moderate quality studies, the findings of this review are inconclusive as to whether cytokines play any definitive role in CFS/ME/SEID, and consequently, they would not serve as reliable biomarkers. Therefore, in light of these results, it is recommended that further efforts toward a diagnostic test and treatment for CFS/ME/SEID continue to be developed in a range of research fields.

Source: Corbitt M, Eaton-Fitch N, Staines D, Cabanas H, Marshall-Gradisnik S. A systematic review of cytokines in chronic fatigue syndrome/myalgic encephalomyelitis/systemic exertion intolerance disease (CFS/ME/SEID). BMC Neurol. 2019 Aug 24;19(1):207. doi: 10.1186/s12883-019-1433-0. https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-019-1433-0 (Full article)

Assessing cellular energy dysfunction in CFS/ME using a commercially available laboratory test

Abstract:

The mitochondrial energy score (MES) protocol, developed by the Myhill group, is marketed as a diagnostic test for chronic fatigue syndrome/Myalgic Encephalomyelitis (CFS/ME). This study assessed the reliability and reproducibility of the test, currently provided by private clinics, to assess its potential to be developed as an NHS accredited laboratory test.

We replicated the MES protocol using neutrophils and peripheral blood mononuclear cells (PBMCs) from CFS/ME patients (10) and healthy controls (13). The protocol was then repeated in PBMCs and neutrophils from healthy controls to investigate the effect of delayed sample processing time used by the Myhill group.

Experiments using the established protocol showed no differences between CFS/ME patients and healthy controls in any of the components of the MES (p ≥ 0.059). Delaying blood sample processing by 24 hours (well within the 72 hour time frame quoted by the Myhill group) significantly altered many of the parameters used to calculate the MES in both neutrophils and PBMCs. The MES test does not have the reliability and reproducibility required of a diagnostic test and therefore should not currently be offered as a diagnostic test for CFS/ME. The differences observed by the Myhill group may be down to differences in sample processing time between cohorts.

Source: Tomas C, Lodge TA, Potter M, Elson JL, Newton JL, Morten KJ. Assessing cellular energy dysfunction in CFS/ME using a commercially available laboratory test. Sci Rep. 2019 Aug 7;9(1):11464. doi: 10.1038/s41598-019-47966-z. https://www.ncbi.nlm.nih.gov/pubmed/31391529

Rethinking ME/CFS Diagnostic Reference Intervals via Machine Learning, and the Utility of Activin B for Defining Symptom Severity

Abstract:

Biomarker discovery applied to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a disabling disease of inconclusive aetiology, has identified several cytokines to potentially fulfil a role as a quantitative blood/serum marker for laboratory diagnosis, with activin B a recent addition. We explored further the potential of serum activin B as a ME/CFS biomarker, alone and in combination with a range of routine test results obtained from pathology laboratories.

Previous pilot study results showed that activin B was significantly elevated for the ME/CFS participants compared to healthy (control) participants. All the participants were recruited via CFS Discovery and assessed via the Canadian/International Consensus Criteria. A significant difference for serum activin B was also detected for ME/CFS and control cohorts recruited for this study, but median levels were significantly lower for the ME/CFS cohort.

Random Forest (RF) modelling identified five routine pathology blood test markers that collectively predicted ME/CFS at ≥62% when compared via weighted standing time (WST) severity classes. A closer analysis revealed that the inclusion of activin B to the panel of pathology markers improved the prediction of mild to moderate ME/CFS cases. Applying correct WST class prediction from RFA modelling, new reference intervals were calculated for activin B and associated pathology markers, where 24-h urinary creatinine clearance, serum urea and serum activin B showed the best potential as diagnostic markers. While the serum activin B results remained statistically significant for the new participant cohorts, activin B was found to also have utility in enhancing the prediction of symptom severity, as represented by WST class.

Source: Lidbury BA, Kita B, Richardson AM, Lewis DP, Privitera E, Hayward S, de Kretser D, Hedger M. Rethinking ME/CFS Diagnostic Reference Intervals via Machine Learning, and the Utility of Activin B for Defining Symptom Severity. Diagnostics (Basel). 2019 Jul 19;9(3). pii: E79. doi: 10.3390/diagnostics9030079. https://www.mdpi.com/2075-4418/9/3/79 (Full article)

Current Research Provides Insight into the Biological Basis and Diagnostic Potential for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe fatigue illness that occurs most commonly following a viral infection, but other physiological triggers are also implicated. It has a profound long-term impact on the life of the affected person. ME/CFS is diagnosed primarily by the exclusion of other fatigue illnesses, but the availability of multiple case definitions for ME/CFS has complicated diagnosis for clinicians.

There has been ongoing controversy over the nature of ME/CFS, but a recent detailed report from the Institute of Medicine (Academy of Sciences, USA) concluded that ME/CFS is a medical, not psychiatric illness. Importantly, aspects of the biological basis of the ongoing disease have been revealed over the last 2-3 years that promise new leads towards an effective clinical diagnostic test that may have a general application.

Our detailed molecular studies with a preclinical study of ME/CFS patients, along with the complementary research of others, have reported an elevation of inflammatory and immune processes, ongoing neuro-inflammation, and decreases in general metabolism and mitochondrial function for energy production in ME/CFS, which contribute to the ongoing remitting/relapsing etiology of the illness. These biological changes have generated potential molecular biomarkers for use in diagnostic ME/CFS testing.

Source: Sweetman E, Noble A, Edgar C, Mackay A, Helliwell A, Vallings R, Ryan M, Tate W. Current Research Provides Insight into the Biological Basis and Diagnostic Potential for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Diagnostics (Basel). 2019 Jul 10;9(3). pii: E73. doi: 10.3390/diagnostics9030073. https://www.mdpi.com/2075-4418/9/3/73 (Full article)

Biomarker Test for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

By Jennifer Abbasi

Myalgic encephalomyelitis/chronic fatigue syndrome affects at least 2 million people in the United States. Despite its prevalence, there’s no laboratory test for the disease, and its diagnosis is based on symptoms like exhaustion, unrefreshing sleep, and light sensitivity. For patients with this debilitating condition, getting a diagnosis is often a long and expensive process. Now, a long-awaited biomarker-based test for the mysterious disease could be on the horizon.

Read the rest of this article HERE.

JAMA. 2019;322(2):107. doi:10.1001/jama.2019.8890

A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

Abstract:

There is not currently a well-established, if any, biological test to diagnose myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The molecular aberrations observed in numerous studies of ME/CFS blood cells offer the opportunity to develop a diagnostic assay from blood samples. Here we developed a nanoelectronics assay designed as an ultrasensitive assay capable of directly measuring biomolecular interactions in real time, at low cost, and in a multiplex format.

To pursue the goal of developing a reliable biomarker for ME/CFS and to demonstrate the utility of our platform for point-of-care diagnostics, we validated the array by testing patients with moderate to severe ME/CFS patients and healthy controls. The ME/CFS samples’ response to the hyperosmotic stressor observed as a unique characteristic of the impedance pattern and dramatically different from the response observed among the control samples. We believe the observed robust impedance modulation difference of the samples in response to hyperosmotic stress can potentially provide us with a unique indicator of ME/CFS. Moreover, using supervised machine learning algorithms, we developed a classifier for ME/CFS patients capable of identifying new patients, required for a robust diagnostic tool.

Source: R. Esfandyarpour, A. Kashi, M. Nemat-Gorgani, J. Wilhelmy, and R. W. Davis. A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). PNAS first published April 29, 2019 https://doi.org/10.1073/pnas.1901274116

Biomarker for chronic fatigue syndrome identified by Stanford researchers

People suffering from a debilitating and often discounted disease known as chronic fatigue syndrome may soon have something they’ve been seeking for decades: scientific proof of their ailment.

Researchers at the Stanford University School of Medicine have created a blood test that can flag the disease, which currently lacks a standard, reliable diagnostic test.

“Too often, this disease is categorized as imaginary,” said Ron Davis, PhD, professor of biochemistry and of genetics. When individuals with chronic fatigue syndrome seek help from a doctor, they may undergo a series of tests that check liver, kidney and heart function, as well as blood and immune cell counts, Davis said. “All these different tests would normally guide the doctor toward one illness or another, but for chronic fatigue syndrome patients, the results all come back normal,” he said.

The problem, he said, is that they’re not looking deep enough. Now, Davis; Rahim Esfandyarpour, PhD, a former Stanford research associate; and their colleagues have devised a blood-based test that successfully identified participants in a study with chronic fatigue syndrome. The test, which is still in a pilot phase, is based on how a person’s immune cells respond to stress. With blood samples from 40 people — 20 with chronic fatigue syndrome and 20 without — the test yielded precise results, accurately flagging all chronic fatigue syndrome patients and none of the healthy individuals.

The diagnostic platform could even help identify possible drugs to treat chronic fatigue syndrome. By exposing the participants’ blood samples to drug candidates and rerunning the diagnostic test, the scientists could potentially see whether the drug improved the immune cells’ response. Already, the team is using the platform to screen for potential drugs they hope can help people with chronic fatigue syndrome down the line.

A paper describing the research findings will be published online April 29 in the Proceedings of the National Academy of Sciences. Davis is the senior author. Esfandyarpour, who is now on the faculty of the University of California-Irvine, is the lead author.

Providing the proof

The diagnosis of chronic fatigue syndrome, when it actually is diagnosed, is based on symptoms — exhaustion, sensitivity to light and unexplained pain, among other things — and it comes only after other disease possibilities have been eliminated. It’s estimated that 2 million people in the United States have chronic fatigue syndrome, but that’s a rough guess, Davis said, and it’s likely much higher.

For Davis, the quest to find scientific evidence of the malady is personal. It comes from a desire to help his son, who has suffered from chronic fatigue syndrome for about a decade. In fact, it was a biological clue that Davis first spotted in his son that led him and Esfandyarpour to develop the new diagnostic tool.

The approach, of which Esfandyarpour led the development, employs a “nanoelectronic assay,” which is a test that measures changes in miniscule amounts of energy as a proxy for the health of immune cells and blood plasma. The diagnostic technology contains thousands of electrodes that create an electrical current, as well as chambers to hold simplified blood samples composed of immune cells and plasma. Inside the chambers, the immune cells and plasma interfere with the current, changing its flow from one end to another. The change in electrical activity is directly correlated with the health of the sample.

The idea is to stress the samples from both healthy and ill patients using salt, and then compare how each sample affects the flow of the electrical current. Changes in the current indicate changes in the cell: the bigger the change in current, the bigger the change on a cellular level. A big change is not a good thing; it’s a sign that the cells and plasma are flailing under stress and incapable of processing it properly. All of the blood samples from chronic fatigue syndrome patients created a clear spike in the test, whereas those from healthy controls returned data that was on a relatively even keel.

“We don’t know exactly why the cells and plasma are acting this way, or even what they’re doing,” Davis said. “But there is scientific evidence that this disease is not a fabrication of a patient’s mind. We clearly see a difference in the way healthy and chronic fatigue syndrome immune cells process stress.” Now, Esfandyarpour and Davis are expanding their work to confirm the findings in a larger cohort of participants.

Doubling up

In addition to diagnosing chronic fatigue syndrome, the researchers are also harnessing the platform to screen for drug-based treatments, since currently the options are slim. “Using the nanoelectronics assay, we can add controlled doses of many different potentially therapeutic drugs to the patient’s blood samples and run the diagnostic test again,” Esfandyarpour said.

If the blood samples taken from those with chronic fatigue syndrome still respond poorly to stress and generate a spike in electrical current, then the drug likely didn’t work. If, however, a drug seems to mitigate the jump in electrical activity, that could mean it is helping the immune cells and plasma better process stress. So far, the team has already found a candidate drug that seems to restore healthy function to immune cells and plasma when tested in the assay. The drug, while successful in the assay, is not currently being used in people with chronic fatigue syndrome, but Davis and Esfandyarpour are hopeful that they can test their finding in a clinical trial in the future.

All of the drugs being tested are either already approved by the Food and Drug Administration or will soon be broadly accessible to the public, which is key to fast access and dissemination should any of these compounds pan out.

###

Other Stanford authors of the study are research scientists Neda Nemat-Gorgani and Julie Wilhelmy and research assistant, Alex Kashi.

The study was funded by the Open Medicine Foundation. Davis is the director of the foundation’s scientific advisory board.

Stanford’s departments of Genetics and of Biochemistry also supported the work

The Stanford University School of Medicine consistently ranks among the nation’s top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Stanford Children’s Health. For information about all three, please visit http://med.stanford.edu.