Abstract:
The latest WHO report determined the increasing diversity within the CoV-2 omicron and its descendent lineages. Some heavily mutated offshoots of BA.5 and BA.2, such as BA.4.6, BF.7, BQ.1.1, and BA.2.75, are responsible for about 20% of infections and are spreading rapidly in multiple countries. It is a sign that Omicron subvariants are now developing a capacity to be more immune escaping and may contribute to a new wave of COVID-19.
Covid-19 infections often induce many alterations in human physiological defense and the natural control systems, with exacerbated activation of the inflammatory and homeostatic response, as for any infectious diseases. Severe activation of the early phase of hemostatic components, often occurs, leading to thrombotic complications and often contributing to a lethal outcome selectively in certain populations. Development of autoimmune complications increases the disease burden and lowers its prognosis.
While the true mechanism still remains unclear, it is believed to mainly be related to the host autoimmune responses as demonstrated, only in some patients suffering from the presence of autoantibodies that worsens the disease evolution. In fact in some studies the development of autoantibodies to angiotensin converting enzyme 2 (ACE2) was identified, and in other studies autoantibodies, thought to be targeting interferon or binding to annexin A1, or autoantibodies to phospholipids were seen. Moreover, the occurrence of autoimmune heparin induced thrombocytopenia has also been described in infected patients treated with heparin for controlling thrombogenicity.
This commentary focuses on the presence of various autoantibodies reported so far in Covid-19 diseases, exploring their association with the disease course and the durability of some related symptoms. Attempts are also made to further analyze the potential mechanism of actions and link the presence of antibodies with pathological complications.
Source: Amiral J, Seghatchian J. Autoimmune complications of COVID-19 and potential consequences for long-lasting disease syndromes. Transfus Apher Sci. 2022 Dec 17:103625. doi: 10.1016/j.transci.2022.103625. Epub ahead of print. PMID: 36585276; PMCID: PMC9757887. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9757887/ (Full text)