Relevance of complement immunity with brain fog in patients with long COVID

Abstract:

Introduction: This study aimed to elucidate the prevalence and clinical characteristics of patients with long COVID (coronavirus disease 2019), especially focusing on 50% hemolytic complement activity (CH50).

Methods: This retrospective observational study focused on patients who visited Okayama University Hospital (Japan) for the treatment of long COVID between February 2021 and March 2023. CH50 levels were measured using liposome immunometric assay (Autokit CH50 Assay, FUJIFILM Wako Pure Chemical Corporation, Japan); high CH50 was defined as ≥59 U/mL. Univariate analyses assessed differences in the clinical background, long COVID symptoms, inflammatory markers, and clinical scores of patients with normal and high CH50. Logistic regression model investigated the association between high CH50 levels and these factors.

Results: Of 659 patients who visited our hospital, 478 patients were included. Of these, 284 (59.4%) patients had high CH50 levels. Poor concentration was significantly more frequent in the high CH50 group (7.2% vs. 13.7%), whereas no differences were observed in other subjective symptoms (fatigue, headache, insomnia, dyspnea, tiredness, and brain fog). Multivariate analysis was performed on factors that could be associated with poor concentration, suggesting a significant relationship to high CH50 levels (adjusted odds ratio [aOR], 2.70; 95% confidence interval [CI], 1.33–5.49). Also, high CH50 was significantly associated with brain fog (aOR, 1.66; 95% CI, 1.04–2.66).

Conclusions: High CH50 levels were frequently reported in individuals with long COVID, indicating a relationship with brain fog. Future in-depth research should examine the pathological role and causal link between complement immunity and the development of long COVID.

Source: Hagiya H, Tokumasu K, Otsuka Y, Sunada N, Nakano Y, Honda H, Furukawa M, Otsuka F. Relevance of complement immunity with brain fog in patients with long COVID. J Infect Chemother. 2023 Oct 20:S1341-321X(23)00261-1. doi: 10.1016/j.jiac.2023.10.016. Epub ahead of print. PMID: 37866620. https://www.sciencedirect.com/science/article/abs/pii/S1341321X23002611

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.