A Systematic Analysis of the Effectiveness of Mitochondrial-Based Therapies for the Management of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Background: This study aimed to compile and analyze an assortment of research findings concerning potential therapeutic strategies for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). The understanding of the multifaceted nature of ME/CFS and the need for varied and personalized therapeutic approaches were central to this investigation.

Methods: A comprehensive review and analysis of various studies conducted on ME/CFS was undertaken. These studies covered a wide array of interventions, including pharmacological treatments, nutritional supplements, dietary changes, physical therapies, and lifestyle modifications. The analysis pertained to the effectiveness of these interventions, potential physiological and biochemical markers, and the response of ME/CFS patients to different treatment strategies.

Results: The 22 selected papers investigated demonstrated varied responses to the multitude of interventions. While some interventions showed significant improvement in fatigue and biochemical parameters, others found no significant differences between the treated and control groups. Potential physiological and biochemical markers for ME/CFS, such as impaired T cell metabolism, reduced flow-mediated dilation, and decreased work rate at the ventilatory threshold, were highlighted.

Conclusion: The findings underscored the complexity of ME/CFS and the need for personalized treatment strategies. Despite mixed results and several limitations, these studies collectively contributed to understanding ME/CFS’s complex pathophysiology and treatment, laying the groundwork for future research towards more effective therapeutic strategies for this debilitating disease.

Source: Keferstein, L.G. A Systematic Analysis of the Effectiveness of Mitochondrial-Based Therapies for the Management of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Preprints 2023, 2023100637. https://doi.org/10.20944/preprints202310.0637.v1 https://www.preprints.org/manuscript/202310.0637/v1 (Full text available as PDF)

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.