Unsupervised cluster analysis reveals distinct subtypes of ME/CFS patients based on peak oxygen consumption and SF-36 scores

Abstract:

Purpose: Myalgic encephalomyelitis, commonly referred to as chronic fatigue syndrome (ME/CFS), is a severe, disabling chronic disease and an objective assessment of prognosis is crucial to evaluate the efficacy of future drugs. Attempts are ongoing to find a biomarker to objectively assess the health status of (ME/CFS), patients. This study therefore aims to demonstrate that oxygen consumption is a biomarker of ME/CFS provides a method to classify patients diagnosed with ME/CFS based on their responses to the Short Form-36 (SF-36) questionnaire, which can predict oxygen consumption using cardiopulmonary exercise testing (CPET).

Methods: Two datasets were used in the study. The first contained SF-36 responses from 2,347 validated records of ME/CFS diagnosed participants, and an unsupervised machine learning model was developed to cluster the data. The second dataset was used as a validation set and included the cardiopulmonary exercise test (CPET) results of 239 participants diagnosed with ME/CFS. Participants from this dataset were grouped by peak oxygen consumption according to Weber’s classification. The SF-36 questionnaire was correctly completed by only 92 patients, who were clustered using the machine learning model. Two categorical variables were then entered into a contingency table: the cluster with values {0,1} and Weber classification {A, B, C, D} were assigned. Finally, the Chi-square test of independence was used to assess the statistical significance of the relationship between the two parameters.

Findings: The results indicate that the Weber classification is directly linked to the score on the SF-36 questionnaire. Furthermore, the 36-response matrix in the machine learning model was shown to give more reliable results than the subscale matrix (p – value < 0.05) for classifying patients with ME/CFS.

Implications: Low oxygen consumption on CPET can be considered a biomarker in patients with ME/CFS. Our analysis showed a close relationship between the cluster based on their SF-36 questionnaire score and the Weber classification, which was based on peak oxygen consumption during CPET. The dataset for the training model comprised raw responses from the SF-36 questionnaire, which is proven to better preserve the original information, thus improving the quality of the model.

Source: Lacasa M, Launois P, Prados F, Alegre J, Casas-Roma J. Unsupervised cluster analysis reveals distinct subtypes of ME/CFS patients based on peak oxygen consumption and SF-36 scores. Clin Ther. 2023 Oct 4:S0149-2918(23)00352-1. doi: 10.1016/j.clinthera.2023.09.007. Epub ahead of print. PMID: 37802746. https://www.clinicaltherapeutics.com/article/S0149-2918(23)00352-1/fulltext (Full text)

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.