Genetic Predisposition for Immune System, Hormone, and Metabolic Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Pilot Study

Abstract:

Introduction: Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS) is a multifactorial illness of unknown etiology with considerable social and economic impact. To investigate a putative genetic predisposition to ME/CFS we conducted genome-wide single-nucleotide polymorphism (SNP) analysis to identify possible variants.

Methods: 383 ME/CFS participants underwent DNA testing using the commercial company 23andMe. The deidentified genetic data was then filtered to include only non-synonymous and nonsense SNPs from exons and microRNAs, and SNPs close to splice sites. The frequencies of each SNP were calculated within our cohort and compared to frequencies from the Kaviar reference database. Functional annotation of pathway sets containing SNP genes with high frequency in ME/CFS was performed using over-representation analysis via ConsensusPathDB. Furthermore, these SNPs were also scored using the Combined Annotation Dependent Depletion (CADD) algorithm to gauge their deleteriousness.

Results: 5693 SNPs were found to have at least 10% frequency in at least one cohort (ME/CFS or reference) and at least two-fold absolute difference for ME/CFS. Functional analysis identified the majority of SNPs as related to immune system, hormone, metabolic, and extracellular matrix organization. CADD scoring identified 517 SNPs in these pathways that are among the 10% most deleteriousness substitutions to the human genome.

Source: Melanie Perez, Rajeev Jaundoo, Kelly Hilton, Ana Del Alamo, Kristina Gemayel, Nancy G. Klimas, Travis J. A. Craddock and Lubov Nathanson. Genetic Predisposition for Immune System, Hormone, and Metabolic Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Pilot Study. Front. Pediatr., 24 May 2019 | https://doi.org/10.3389/fped.2019.00206 (Full article)

New light shed on cause of chronic fatigue syndrome

New research findings may shed new light on the potential cause of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME).

Researchers from Griffith University’s National Centre for Neuroimmunology and Emerging Diseases (NCNED) — part of the new Menzies Health Institute Queensland — have uncovered significant factors contributing to the pathology of this illness.

The results reveal genetic changes in important receptors associated with immunological and cellular function and contribute to the development of this complex illness.

“These findings have been achieved through a team effort involving researchers, patients, funding bodies, clinicians and the support of Griffith University and the Queensland Government,” say chief investigators Professor Sonya Marshall-Gradisnik and Professor Donald Staines.

Co-researcher and consultant immunologist Professor Pete Smith said that important signalling mechanisms are disrupted as a result of these genetic changes involving the detection and response to threats.

“These are primitive genes that are involved in many cellular signals in the brain, gut, cardiovascular and immune systems, as well as in the mediation of pain.”

These research findings coincide with International Neuroimmune Awareness week commencing Monday 11 May.

The Griffith Health Centre on the university’s Gold Coast campus is being lit up each evening from 10 -12 May to raise awareness of neurological conditions such as CFS/ME as well as other conditions such as Fibromyalgia and Gulf War Syndrome.

“The lighting up of the Griffith Health Centre signifies Griffith’s commitment to the CFS patient community and our team approach to this research,” says Pro-Vice Chancellor (Health) Professor Allan Cripps.

CFS/ME is a highly debilitating disorder characterized by profound fatigue, muscle and joint pain, cerebral symptoms of impaired memory and concentration, impaired cardiovascular function, gut disorder and sensory dysfunction such as noise intolerance and balance disturbance. Many cases can continue for months or years. It is believed to affect around 250,000 Australians.

The research findings are to be presented at an international conference in London later this month.

Journal Reference: Sonya Marshall-Gradisnik, Donald Staines, Pete Smith, Bernd Nilius, Ekua Brenu, Sandra Ramos. Examination of Single Nucleotide Polymorphisms (SNPs) in Transient Receptor Potential (TRP) Ion Channels in Chronic Fatigue Syndrome Patients. Immunology and Immunogenetics Insights, 2015; 1 DOI: 10.4137/III.S25147

 

Source: Griffith University. “New light shed on cause of chronic fatigue syndrome.” ScienceDaily. ScienceDaily, 11 May 2015. https://www.sciencedaily.com/releases/2015/05/150511172755.htm 

 

A systematic review of the association between fatigue and genetic polymorphisms

Abstract:

Fatigue is one of the most common and distressing symptoms, leading to markedly decreased quality of life among a large subset of patients with a variety of disorders. Susceptibility to fatigue may be influenced by genetic factors including single nucleotide polymorphisms (SNPs), especially in the regulatory regions, of relevant genes.

To further investigate the association of SNPs with fatigue in various patient populations, a systematic search was conducted on Pubmed, CINAHL, PsycINFO, and Sociological Abstracts Database for fatigue related-terms in combination with polymorphisms or genetic variation-related terms. Fifty papers in total met the inclusion and exclusion criteria for this analysis. These 50 papers were further classified into three subgroups for evaluation: chronic fatigue syndrome (CFS), cancer-related fatigue (CRF) and other disease-related fatigue.

SNPs in regulatory pathways of immune and neurotransmitter systems were found to play important roles in the etiologies of CFS, CRF and other disease-related fatigue. Evidence for associations between elevated fatigue and specific polymorphisms in TNFα, IL1b, IL4 and IL6 genes was revealed for all three subgroups of fatigue.

We also found CFS shared a series of polymorphisms in HLA, IFN-γ, 5-HT and NR3C1 genes with other disease-related fatigue, however these SNPs (excluding IFN-γ) were not found to be adequately investigated in CRF. Gaps in knowledge related to fatigue etiology and recommendations for future research are further discussed.

Copyright © 2017 Elsevier Inc. All rights reserved.

 

Source: Wang T, Yin J, Miller AH, Xiao C. A systematic review of the association between fatigue and genetic polymorphisms. Brain Behav Immun. 2017 Jan 12. pii: S0889-1591(17)30007-7. doi: 10.1016/j.bbi.2017.01.007. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/28089639

 

A targeted genome association study examining transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

Abstract:

BACKGROUND: Chronic Fatigue Syndrome, also known as Myalgic Encephalomyelitis (CFS/ME) is a debilitating condition of unknown aetiology. It is characterized by a range of physiological effects including neurological, sensory and motor disturbances. This study examined candidate genes for the above clinical manifestations to identify single nucleotide polymorphism (SNP) alleles associated with CFS/ME compared with healthy controls.

METHODS: DNA was extracted and whole genome genotyping was performed using the HumanOmniExpress BeadChip array. Gene families for transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors, and acetylcholinesterase were targeted. The frequency of each SNP and their association between CFS/ME and healthy controls was examined using Fisher’s exact test, and to adjust for multiple testing, False Detection Rate (FDR) and Bonferroni corrections were applied (p < 0.05).

RESULTS: The study included 172 participants, consisting of 95 Fukuda defined CFS/ME patients (45.8 ± 8.9; 69 % female) and 77 healthy controls (42.3 ± 10.3; 63 % female). A total of 950 SNPs were included for analysis. 60 significant SNPs were associated with CFS/ME compared with healthy controls. After applying FDR and Bonferroni corrections, SNP rs2322333 in adrenergic receptor α1 (ADRA1A) was higher in CFS/ME compared with healthy controls (45.3 % vs. 23.4 %; p = 0.059). The genotype class that was homozygous minor (AA) was substantially lower in CFS/ME compared with healthy controls (4.2 % vs. 24.7 %).

CONCLUSIONS: This study reports for the first time the identification of ADRA1A and a possible association between CFS/ME and genotype classes. Further examination of the functional role of this class of adrenergic receptors may elucidate the cause of particular clinical manifestations observed in CFS/ME

 

Source: Johnston S, Staines D, Klein A, Marshall-Gradisnik S. A targeted genome association study examining transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. BMC Med Genet. 2016 Nov 11;17(1):79. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105265/ (Full article)

 

Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients

Abstract:

OBJECTIVE: The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca2+) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients.

METHODS: A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software.

RESULTS: Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3′ untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group.

CONCLUSION: This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca2+ dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.

© The Author(s) 2016.

 

Source: Marshall-Gradisnik S, Johnston S, Chacko A, Nguyen T, Smith P, Staines D. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Int Med Res. 2016 Nov 10. pii: 0300060516671622. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/27834303

 

Is chronic fatigue syndrome truly associated with haplogroups or mtDNA single nucleotide polymorphisms?

Letter to the Editor:

With interest we read the article by Billing-Ross et al. [1] about 193 patients with chronic fatigue syndrome (CFS) diagnosed according to the Fukuda or Canadian Consensus criteria and undergoing sequencing of the mtDNA, the DePaul Symptom questionnaire and the Medical Outcome Survey Short Form-36. The study showed that CFS is associated with mtDNA haplogroups J, U and H, that 8 mtDNA single nucleotide polymorphisms (SNPs) were associated with 16 symptom categories, and that three haplogroups were associated with six symptom categories [1]. We have the following comments and concerns.

The main limitation of this study is that only the mtDNA was investigated for sequence variants. Since it is well-known that mitochondrial disorders (MIDs) may be also caused by mutations in nDNA-located genes, particularly in children [2], disease-causing mutations or SNPs facilitating the development of CFS may have been missed. Furthermore, MIDs may not only be due to respiratory chain dysfunction but also due to disruption of other mitochondrial pathways, such as the beta-oxidation, the hem synthesis, the calcium handling, the coenzyme-Q metabolism, or the urea cycle. There is also consensus that investigations of mtDNA mutations or SNPs in mtDNA from lymphocytes may not be constructive since some mutations may not be present or heteroplasmy rates may be lower than in more severely affected tissues [3].

You can read the rest of this letter herehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912808/

 

Source: Finsterer J, Zarrouk-Mahjoub S. Is chronic fatigue syndrome truly associated with haplogroups or mtDNA single nucleotide polymorphisms? J Transl Med. 2016 Jun 18;14(1):182. doi: 10.1186/s12967-016-0939-0. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912808/ (Full article)

 

Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

AIM: The aim of this paper was to determine natural killer (NK) cytotoxic activity and if single nucleotide polymorphisms (SNPs) and genotypes in transient receptor potential (TRP) ion channels and acetylcholine receptors (AChRs) were present in isolated NK cells from previously identified myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) patients.

SUBJECTS AND METHODS: A total of 39 ME/CFS patients (51.69±2 years old) and 30 unfatigued controls (47.60±2.39 years old) were included in this study. Patients were defined according to the 1994 Centers for Disease Control and Prevention criteria. Flow cytometry protocols were used to examine NK cytotoxic activity. A total of 678 SNPs from isolated NK cells were examined for 21 mammalian TRP ion channel genes and for nine mammalian AChR genes via the Agena Bioscience iPlex Gold assay. SNP association and genotype was determined using analysis of variance and Plink software.

RESULTS: ME/CFS patients had a significant reduction in NK percentage lysis of target cells (17%±4.68%) compared with the unfatigued control group (31%±6.78%). Of the 678 SNPs examined, eleven SNPs for TRP ion channel genes (TRPC4, TRPC2, TRPM3, and TRPM8) were identified in the ME/CFS group. Five of these SNPs were associated with TRPM3, while the remainder were associated with TRPM8, TRPC2, and TRPC4 (P<0.05). Fourteen SNPs were associated with nicotinic and muscarinic AChR genes: six with CHRNA3, while the remainder were associated with CHRNA2, CHRNB4, CHRNA5, and CHRNE (P<0.05). There were sixteen genotypes identified from SNPs in TRP ion channels and AChRs for TRPM3 (n=5), TRPM8 (n=2), TRPC4 (n=3), TRPC2 (n=1), CHRNE (n=1), CHRNA2 (n=2), CHRNA3 (n=1), and CHRNB4 (n=1) (P<0.05).

CONCLUSION: We identified a number of SNPs and genotypes for TRP ion channels and AChRs from isolated NK cells in patients with ME/CFS, suggesting these SNPs and genotypes may be involved in changes in NK cell function and the development of ME/CFS pathology. These anomalies suggest a role for dysregulation of Ca(2+) in AChR and TRP ion channel signaling in the pathomechanism of ME/CFS.

 

Source: Marshall-Gradisnik S, Huth T, Chacko A, Johnston S, Smith P, Staines D. Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome. Appl Clin Genet. 2016 Mar 31;9:39-47. doi: 10.2147/TACG.S99405. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821384/ (Full article)