Improvement Effects of Myelophil on Symptoms of Chronic Fatigue Syndrome in a Reserpine-Induced Mouse Model

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is associated with various symptoms, such as depression, pain, and fatigue. To date, the pathological mechanisms and therapeutics remain uncertain. The purpose of this study was to investigate the effect of myelophil (MYP), composed of Astragali Radix and Salviaemiltiorrhizae Radix, on depression, pain, and fatigue behaviors and its underlying mechanisms.

Reserpine (2 mg/kg for 10 days, intraperitoneally) induced depression, pain, and fatigue behaviors in mice. MYP treatment (100 mg/kg for 10 days, intragastrically) significantly improved depression behaviors, mechanical and thermal hypersensitivity, and fatigue behavior. MYP treatment regulated the expression of c-Fos, 5-HT1A/B receptors, and transforming growth factor β (TGF-β) in the brain, especially in the motor cortex, hippocampus, and nucleus of the solitary tract. MYP treatment decreased ionized calcium binding adapter molecule 1 (Iba1) expression in the hippocampus and increased tyrosine hydroxylase (TH) expression and the levels of dopamine and serotonin in the striatum. MYP treatment altered inflammatory and anti-oxidative-related mRNA expression in the spleen and liver.

In conclusion, MYP was effective in recovering major symptoms of ME/CFS and was associated with the regulation of dopaminergic and serotonergic pathways and TGF-β expression in the brain, as well as anti-inflammatory and anti-oxidant mechanisms in internal organs.

Source: Song JH, Won SK, Eom GH, Lee DS, Park BJ, Lee JS, Son CG, Park JY. Improvement Effects of Myelophil on Symptoms of Chronic Fatigue Syndrome in a Reserpine-Induced Mouse Model. Int J Mol Sci. 2021 Sep 22;22(19):10199. doi: 10.3390/ijms221910199. PMID: 34638540. https://pubmed.ncbi.nlm.nih.gov/34638540/

Does acetaminophen activate endogenous pain inhibition in chronic fatigue syndrome/fibromyalgia and rheumatoid arthritis? A double-blind randomized controlled cross-over trial

Abstract:

BACKGROUND: Although enhanced temporal summation (TS) and conditioned pain modulation (CPM), as characteristic for central sensitization, has been proved to be impaired in different chronic pain populations, the exact nature is still unknown.

OBJECTIVES: We examined differences in TS and CPM in 2 chronic pain populations, patients with both chronic fatigue syndrome (CFS) and comorbid fibromyalgia (FM) and patients with rheumatoid arthritis (RA), and in sedentary, healthy controls, and evaluated whether activation of serotonergic descending pathways by acetaminophen improves central pain processing.

STUDY DESIGN: Double-blind randomized controlled trial with cross-over design.

METHODS: Fifty-three women (19 CFS/FM patients, 16 RA patients, and 18 healthy women) were randomly allocated to the experimental group (1 g acetaminophen) or the placebo group (1 g dextrose). Participants underwent an assessment of endogenous pain inhibition, consisting of an evaluation of temporal summation with and without conditioned pain modulation (CPM). Seven days later groups were crossed-over. Patients and assessors were blinded for the allocation.

RESULTS: After intake of acetaminophen, pain thresholds increased slightly in CFS/FM patients, and decreased in the RA and the control group. Temporal summation was reduced in the 3 groups and CPM at the shoulder was better overall, however only statistically significant for the RA group. Healthy controls showed improved CPM for both finger and shoulder after acetaminophen, although not significant.

LIMITATIONS: The influence of acetaminophen on pain processing is inconsistent, especially in the patient groups examined.

CONCLUSION: This is the first study comparing the influence of acetaminophen on central pain processing in healthy controls and patients with CFS/FM and RA. It seems that CFS/FM patients present more central pain processing abnormalities than RA patients, and that acetaminophen may have a limited positive effect on central pain inhibition, but other contributors have to be identified and evaluated.

 

Source: Meeus M, Ickmans K, Struyf F, Hermans L, Van Noesel K, Oderkerk J, Declerck LS, Moorkens G, Hans G, Grosemans S, Nijs J. Does acetaminophen activate endogenous pain inhibition in chronic fatigue syndrome/fibromyalgia and rheumatoid arthritis? A double-blind randomized controlled cross-over trial. Pain Physician. 2013 Mar-Apr;16(2):E61-70. http://www.painphysicianjournal.com/linkout?issn=1533-3159&vol=16&page=E61 (Full article available as PDF file)

 

Genetics and Gene Expression Involving Stress and Distress Pathways in Fibromyalgia with and without Comorbid Chronic Fatigue Syndrome

Abstract:

In complex multisymptom disorders like fibromyalgia syndrome (FMS) and chronic fatigue syndrome (CFS) that are defined primarily by subjective symptoms, genetic and gene expression profiles can provide very useful objective information.

This paper summarizes research on genes that may be linked to increased susceptibility in developing and maintaining these disorders, and research on resting and stressor-evoked changes in leukocyte gene expression, highlighting physiological pathways linked to stress and distress. These include the adrenergic nervous system, the hypothalamic-pituitary-adrenal axis and serotonergic pathways, and exercise responsive metabolite-detecting ion channels.

The findings to date provide some support for both inherited susceptibility and/or physiological dysregulation in all three systems, particularly for catechol-O-methyl transferase (COMT) genes, the glucocorticoid and the related mineralocorticoid receptors (NR3C1, NR3C2), and the purinergic 2X4 (P2X4) ion channel involved as a sensory receptor for muscle pain and fatigue and also in upregulation of spinal microglia in chronic pain models. Methodological concerns for future research, including potential influences of comorbid clinical depression and antidepressants and other medications, on gene expression are also addressed.

 

Source: Light KC, White AT, Tadler S, Iacob E, Light AR. Genetics and Gene Expression Involving Stress and Distress Pathways in Fibromyalgia with and without Comorbid Chronic Fatigue Syndrome. Pain Res Treat. 2012;2012:427869. doi: 10.1155/2012/427869. Epub 2011 Sep 29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200121/ (Full article)

 

Serotonergic descending inhibition in chronic pain: design, preliminary results and early cessation of a randomized controlled trial

Abstract:

AIM: We examined whether activation of serotonergic descending pathways improves pain inhibition during exercise in patients with chronic fatigue syndrome (CFS) and comorbid fibromyalgia (FM) in comparison with rheumatoid arthritis (RA) and sedentary, healthy controls in a double-blind randomized controlled trial with cross-over design.

PATIENTS AND METHODS: Three female CFS/FM patients, one female RA patient and two healthy women were randomly allocated to the experimental group (2 ml of citalopram intravenously) or the placebo group (2 ml of 0.9% NaCl intravenously). Participants performed a submaximal exercise protocol, preceded and followed by an assessment of endogenous pain inhibition. Seven days later, groups were crossed over.

RESULTS: Significant side-effects were observed in all, but one participant immediately after intravenous administration of citalopram. One CFS/FM patient withdrew because of severe post-exertional malaise.

CONCLUSION: It was decided that proceeding with the study would be unethical. No conclusion could be made regarding pain inhibition during exercise in CFS/FM compared to RA and controls.

 

Source: Meeus M, Ickmans K, De Clerck LS, Moorkens G, Hans G, Grosemans S, Nijs J. Serotonergic descending inhibition in chronic pain: design, preliminary results and early cessation of a randomized controlled trial. In Vivo. 2011 Nov-Dec;25(6):1019-25. https://www.ncbi.nlm.nih.gov/pubmed/22021700

 

Functional genomics of serotonin receptor 2A (HTR2A): interaction of polymorphism, methylation, expression and disease association

Abstract:

Serotonergic neurotransmission plays a key role in the pathophysiology of neuropsychiatric illnesses. The functional significance of a promoter polymorphism, -1438G/A (rs6311), in one of the major genes of this system (serotonin receptor 2A, HTR2A) remains poorly understood in the context of epigenetic factors, transcription factors and endocrine influences. We used functional and structural equation modeling (SEM) approaches to assess the contributions of the polymorphism (rs6311), DNA methylation and clinical variables to HTR2A expression in chronic fatigue syndrome (CFS) subjects from a population-based study. HTR2A was up-regulated in CFS through allele-specific expression modulated by transcription factors at critical sites in its promoter: an E47 binding site at position -1,438, (created by the A-allele of rs6311 polymorphism), a glucocorticoid receptor (GR) binding site encompassing a CpG at position -1,420, and Sp1 binding at CpG methylation site -1,224. Methylation at -1,420 was strongly correlated with methylation at -1,439, a CpG site that is dependent upon the G-allele of rs6311 at position -1,438. SEM revealed a strong negative interaction between E47 and GR binding (in conjunction with cortisol level) on HTR2A expression. This study suggests that the promoter polymorphism (rs6311) can affect both transcription factor binding and promoter methylation, and this along with an individual’s stress response can impact the rate of HTR2A transcription in a genotype and methylation-dependent manner. This study can serve as an example for deciphering the molecular determinants of transcriptional regulation of major genes of medical importance by integrating functional genomics and SEM approaches. Confirmation in an independent study population is required.

 

Source: Falkenberg VR, Gurbaxani BM, Unger ER, Rajeevan MS. Functional genomics of serotonin receptor 2A (HTR2A): interaction of polymorphism, methylation, expression and disease association. Neuromolecular Med. 2011 Mar;13(1):66-76. doi: 10.1007/s12017-010-8138-2. Epub 2010 Oct 13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044825/ (Full article)