Background: Though primarily a pulmonary disease, Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus can generate devastating disease states that affect multiple organ systems including the central nervous system (CNS). The various neurological disorders associated with COVID-19 range in severity from mild symptoms such as headache, or myalgias to more severe symptoms such as stroke, psychosis, and anosmia. While some of the COVID-19 associated neurological complications are mild and reversible, a significant number of patients suffer from stroke. Studies have shown that COVID-19 infection triggers a wave of inflammatory cytokines that induce endothelial cell dysfunction and generate coagulopathy that increases the risk of stroke or thromboses. Inflammation of the endothelium following infection may also destabilize atherosclerotic plaque and induce thrombotic stroke. Although uncommon, there have also been reports of hemorrhagic stroke associated with COVID-19.
The proposed mechanisms include a blood pressure increase caused by infection leading to a reduction in angiotensin converting enzyme-2 (ACE-2) levels that results in an imbalance of the renin-angiotensin system ultimately manifesting inflammation and vasoconstriction. Coagulopathy, as demonstrated by elevated prothrombin time (PT), has also been posited as a factor contributing to hemorrhagics stroke in patients with COVID-19. Other neurological conditions associated with COVID-19 include encephalopathy, anosmia, encephalitis, psychosis, brain fog, headache, depression, and anxiety. Though there are several hypotheses reported in the literature, a unifying pathophysiological mechanism of many of these disorders remains unclear. Pulmonary dysfunction leading to poor oxygenation of the brain may explain encephalopathy and other disorders in COVID-19 patients. Alternatively, a direct invasion of the CNS by the virus or breach of the blood-brain barrier by the systemic cytokines released during infection may be responsible for these conditions. Notwithstanding, the relationship between the inflammatory cytokine levels and conditions such as depression and anxiety is contradictory and perhaps the social isolation during the pandemic may in part be a contributing factor to some of the reported CNS disorders.
Objective: In this article, we review the current literature pertaining to some of the most significant and common neurological disorders such as ischemic and hemorrhagic stroke, encephalopathy, encephalitis, brain fog, Long COVID, headache, Guillain-Barre syndrome, depression, anxiety, and sleep disorders in the setting of COVID-19. We summarize some of the most relevant literature to provide a better understanding of the mechanistic details regarding these disorders in order to help physicians monitor and treat patients for significant COVID-19 associated neurologic impairments.
Methods: A literature review was carried out by the authors using PubMed with the search terms “COVID-19” and “Neurology”, “Neurological Manifestations”, “Neuropsychiatric Manifestations”, “Stroke”, “Encephalopathy”, “Headache”, “Guillain-Barre syndrome”, “Depression”, “Anxiety”, “Encephalitis”, “Seizure”, “Spasm”, and “ICUAW”. Another search was carried out for “Long-COVID” and “Post-Acute COVID-19” and “Neurological Manifestations” or “Neuropsychiatric Manifestations”. Articles such as case reports, case series, and cohort studies were included as references. No language restrictions were enforced. In the case of anxiety and depression, attempts were made to focus mainly on articles describing these conditions in infected patients.
Results: A total of 112 articles were reviewed. The incidence, clinical outcomes, and pathophysiology of selected neurological disorders are discussed below. Given the recent advent of this disease, the incidence of certain neurologic sequelae was not always available. Putative mechanisms for each condition in the setting of COVID-19 are outlined.
Source: Ahmad SJ, Feigen CM, Vazquez JP, Kobets AJ, Altschul DJ. Neurological Sequelae of COVID-19. J Integr Neurosci. 2022 Apr 6;21(3):77. doi: 10.31083/j.jin2103077. PMID: 35633158. https://www.imrpress.com/journal/JIN/21/3/10.31083/j.jin2103077/htm (Full text)