Biological and molecular characteristics of human herpesvirus 7: in vitro growth optimization and development of a syncytia inhibition test

Abstract:

Two isolates of human herpesvirus 7 (HHV-7) were recovered from phytohemagglutinin-activated peripheral blood mononuclear cells of a patient with chronic fatigue syndrome and of a healthy blood donor. A genetic polymorphism between the two isolates was detected by Southern blot analysis using a novel HHV-7 genomic clone (pVL8) as a probe. We developed optimized conditions for the in vitro propagation of HHV-7 by using enriched populations of activated CD4+ T lymphocytes derived from normal peripheral blood, resulting in the production of high-titered extracellular virus (> 10(6) cell culture infectious doses/ml). Bona fide syncytia formation was documented both in normal CD4+ T lymphocytes and in the Sup-T1 CD4+ T-cell line following infection with high-titered HHV-7. To identify neutralizing antibodies to HHV-7, a syncytia-inhibition test was developed. Variable titers of syncytia-neutralizing antibodies were detected in all the human sera tested, thus confirming the high prevalence of HHV-7 in the human population.

 

Source: Secchiero P, Berneman ZN, Gallo RC, Lusso P. Biological and molecular characteristics of human herpesvirus 7: in vitro growth optimization and development of a syncytia inhibition test. Virology. 1994 Jul;202(1):506-12. http://www.ncbi.nlm.nih.gov/pubmed/8009865

 

Human herpesvirus-7 (HHV-7)

Abstract:

HHV-7 first isolated in 1990 from a healthy individual, is a ubiquitous agent. The second independent isolation of HHV-7 from a chronic fatigue syndrome patient was reported in 1992. The seroepidemiology of HHV-7 suggested that its prevalence rate in the U.S.A. population is > 85%; however, in Japan a low prevalence rate has been reported. HHV-7 can be more readily isolated from the saliva than HHV-6. The primary infection of HHV-7 appears later in life than HHV-6. No disease has been reported that is etiologically linked to HHV-7. HHV-7 is more closely related to HHV-6 and the human cytomegalovirus than other members of the human herpesvirus family.

 

Source: Ablashi DV, Berneman ZN, Kramarsky B, Asano Y, Choudhury S, Pearson GR. Human herpesvirus-7 (HHV-7). In Vivo. 1994 Jul-Aug;8(4):549-54. http://www.ncbi.nlm.nih.gov/pubmed/7893982

 

Human herpesvirus-6 (HHV-6) (short review)

Abstract:

Human Herpesvirus-6 is the etiological agent of Roseola infantum and approximately 12% of heterophile antibody negative infectious mononucleosis. HHV-6 is T-lymphotropic, and readily infects and lyses CD4+ cells. The prevalence rate of HHV-6 in the general population is about 80% (as measured by IFA) with an IgG antibody titer of 1:80. A lower prevalence, however, is observed in some countries.

HHV-6 is reactivated in various malignant and non-malignant diseases as well as in Chronic Fatigue Syndrome and transplant patients. Furthermore, elevated antibody titers were also observed in lymphoproliferative disorders, auto-immune diseases and HIV-1 positive AIDS patients. There appears to be some strain variability in HHV-6 isolates.

The GS isolates of HHV-6 (prototype) was resistant to Acyclovir, Gancyclovir, but its replication was inhibited by Phosphonoacetic acid and Phosphoformic acid. HHV-7 isolated from healthy individuals showed, by restriction analysis, that 6 out of 11 probes derived from two strains of HHV-6, cross-hybridized with DNA fragments, derived from HHV-7.

 

Source: Ablashi DV, Salahuddin SZ, Josephs SF, Balachandran N, Krueger GR, Gallo RC. Human herpesvirus-6 (HHV-6) (short review). In Vivo. 1991 May-Jun;5(3):193-9. http://www.ncbi.nlm.nih.gov/pubmed/1654146