Brain 18F-FDG PET imaging in outpatients with post-COVID-19 conditions: findings and associations with clinical characteristics

Abstract:

Background: Brain 18F-FDG PET imaging has the potential to provide an objective assessment of brain involvement in post-COVID-19 conditions but previous studies of heterogeneous patient series yield inconsistent results. The current study aimed to investigate brain 18F-FDG PET findings in a homogeneous series of outpatients with post-COVID-19 conditions and to identify associations with clinical patient characteristics.

Methods: We retrospectively included 28 consecutive outpatients who presented with post-COVID-19 conditions between September 2020 and May 2022 and who satisfied the WHO definition, and had a brain 18F-FDG PET for suspected brain involvement but had not been hospitalized for COVID-19. A voxel-based group comparison with 28 age- and sex-matched healthy controls was performed (p-voxel at 0.005 uncorrected, p-cluster at 0.05 FWE corrected) and identified clusters were correlated with clinical characteristics.

Results: Outpatients with post-COVID-19 conditions exhibited diffuse hypometabolism predominantly involving right frontal and temporal lobes including the orbito-frontal cortex and internal temporal areas. Metabolism in these clusters was inversely correlated with the number of symptoms during the initial infection (r = – 0.44, p = 0.02) and with the duration of symptoms (r = – 0.39, p = 0.04). Asthenia and cardiovascular, digestive, and neurological disorders during the acute phase and asthenia and language disorders during the chronic phase (p ≤ 0.04) were associated with these hypometabolic clusters.

Conclusion: Outpatients with post-COVID-19 conditions exhibited extensive hypometabolic right fronto-temporal clusters. Patients with more numerous symptoms during the initial phase and with a longer duration of symptoms were at higher risk of persistent brain involvement.

Source: Goehringer F, Bruyere A, Doyen M, Bevilacqua S, Charmillon A, Heyer S, Verger A. Brain 18F-FDG PET imaging in outpatients with post-COVID-19 conditions: findings and associations with clinical characteristics. Eur J Nucl Med Mol Imaging. 2022 Nov 2. doi: 10.1007/s00259-022-06013-2. Epub ahead of print. PMID: 36322190. https://link.springer.com/article/10.1007/s00259-022-06013-2 (Full text)

Utility of positron emission tomography imaging in the diagnosis of chronic Q fever: A Systematic Review

Abstract:

Chronic Q fever is a diagnostic challenge. Diagnosis relies on serology and/or the detection of DNA from blood or tissue samples. PET-CT identifies tissues with increased glucose metabolism, thus identifying foci of inflammation. Our aim was to review the existing literature on the use of PET-CT to help diagnose chronic Q fever. A literature search was conducted in PubMed and Google Scholar to ascertain publications that included the terms ‘Positron Emission Tomography’ and ‘PET CT’ in combination with subheadings ‘chronic Q fever’ and ‘Coxiella burnetii’ within the search. To broaden our search retrieval, we used the terms ‘chronic Q fever’ and ‘PET-CT’.

Published literature up to 16th April 2020 was included. 274 articles were initially identified. Post-exclusion criteria, 46 articles were included. Amongst case reports and series, the most frequent focus of infection was vascular, followed by musculoskeletal then cardiac. 79.5% of patients had a focus detected with 55.3% of these having proven infected prosthetic devices. Amongst the retrospective and prospective studies, a total of 394 positive sites of foci were identified with 186 negative cases. Some had follow-up scans (53), with 75.5% showing improvement or resolution. Average timeframe for documented radiological resolution post-initiating treatment was 8.86 months.

PET-CT is a useful tool in the management of chronic Q fever. Knowledge of a precise focus enables for directed surgical management helping reduce microbial burden, preventing future complications. Radiological resolution of infection can give clinicians reassurance on whether antimicrobial therapy can be ceased earlier, potentially limiting side effects.

Source: Sivabalan P, Visvalingam R, Grey V, Blazak J, Henderson A, Norton R. Utility of positron emission tomography imaging in the diagnosis of chronic Q fever: A Systematic Review. J Med Imaging Radiat Oncol. 2021 May 30. doi: 10.1111/1754-9485.13244. Epub ahead of print. PMID: 34056851. https://pubmed.ncbi.nlm.nih.gov/34056851/

Brain Science on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease characterized by chronic, profound, disabling, and unexplained fatigue. A variety of studies have been performed to establish objective biomarkers of the disease, including positron emission tomography (PET) molecular imaging and neuro-functional imaging using magnetic resonance imaging (MRI) and magnetoencephalogram (MEG). In this chapter, we summarize the results from PET, MRI, and MEG imaging.

Regional cerebral blood flow and glucose utilization rates are decreased in patients with ME/CFS as compared with age- and sex-matched healthy subjects. Acetyl-L-carnitine uptake into the releasable pool of glutamate and serotonin transporters densities are decreased in a few specific brain regions, mostly in the anterior cingulate in the patients. Although it is hypothesized that brain inflammation is involved in the pathophysiology of ME/CFS, there was no direct evidence of neuroinflammation in patients.

Our recent PET study successfully demonstrated that neuroinflammation is present in widespread brain areas in ME/CFS patients, and is associated with the severity of neuropsychological symptoms. Evaluation of neuroinflammation in patients with ME/CFS may be essential for understanding the core pathophysiology, as well as for developing objective diagnostic criteria and effective medical treatments for ME/CFS. By using specific neurological features of these patients such as prefrontal cortical atrophies and the over-guarding phenomenon were found using MRI and functional MRI, respectively. We here describe related pathophysiological findings and topics in order to aid in the development of future therapies for ME/CFS patients.

Source: Watanabe Y. Brain Science on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Brain Nerve. 2018 Nov;70(11):1193-1201. doi: 10.11477/mf.1416201164. [Article in Japanese]  https://www.ncbi.nlm.nih.gov/pubmed/30416112

Neuroinflammation in the Brain of Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by chronic, profound, disabling, and unexplained fatigue; cognitive impairment; and chronic widespread pain. By using positron emission tomography, our study demonstrated neuroinflammation in the brain of patients with ME/CFS. Neuroinflammation was found to be widespread in the brain areas of the patients with ME/CFS and was associated with the severity of their neuropsychological symptoms. The ongoing research would lead to the establishment of objective diagnostic criteria and development of an appropriate therapy.

Source: Nakatomi Y1, Kuratsune H, Watanabe Y. Neuroinflammation in the Brain of Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Brain Nerve. 2018 Jan;70(1):19-25. doi: 10.11477/mf.1416200945. [Article in Japanese] https://www.ncbi.nlm.nih.gov/pubmed/29348371

Toward a clearer diagnosis of chronic fatigue syndrome

Researchers at the RIKEN Center for Life Science Technologies, in collaboration with Osaka City University and Kansai University of Welfare Sciences, have used functional PET imaging to show that levels of neuroinflammation, or inflammation of the nervous system, are higher in patients with chronic fatigue syndrome than in healthy people.

Chronic fatigue syndrome, which is also known as myalgic encephalomyelitis, is a debilitating condition characterized by chronic, profound, and disabling fatigue. Unfortunately, the causes are not well understood.

Neuroinflammation — the inflammation of nerve cells — has been hypothesized to be a cause of the condition, but no clear evidence has been put forth to support this idea. Now, in this clinically important study, published in The Journal of Nuclear Medicine, the researchers found that indeed the levels of neuroinflammation markers are elevated in CFS/ME patients compared to the healthy controls.

The researchers performed PET scanning on nine people diagnosed with CFS/ME and ten healthy people, and asked them to complete a questionnaire describing their levels of fatigue, cognitive impairment, pain, and depression. For the PET scan they used a protein that is expressed by microglia and astrocyte cells, which are known to be active in neuroinflammation.

The researchers found that neuroinflammation is higher in CFS/ME patients than in healthy people. They also found that inflammation in certain areas of the brain — the cingulate cortex, hippocampus, amygdala, thalamus, midbrain, and pons — was elevated in a way that correlated with the symptoms, so that for instance, patients who reported impaired cognition tended to demonstrate neuroinflammation in the amygdala, which is known to be involved in cognition. This provides clear evidence of the association between neuroinflammation and the symptoms experienced by patients with CFS/ME.

Though the study was a small one, confirmation of the concept that PET scanning could be used as an objective test for CFS/ME could lead to better diagnosis and ultimately to the development of new therapies to provide relief to the many people around the world afflicted by this condition.

Dr. Yasuyoshi Watanabe, who led the study at RIKEN, stated, “We plan to continue research following this exciting discovery in order to develop objective tests for CFS/ME and ultimately ways to cure and prevent this debilitating disease.”

Journal Reference: Y. Nakatomi, K. Mizuno, A. Ishii, Y. Wada, M. Tanaka, S. Tazawa, K. Onoe, S. Fukuda, J. Kawabe, K. Takahashi, Y. Kataoka, S. Shiomi, K. Yamaguti, M. Inaba, H. Kuratsune, Y. Watanabe. Neuroinflammation in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: An 11C-(R)-PK11195 PET Study. Journal of Nuclear Medicine, 2014; DOI:10.2967/jnumed.113.131045

 

Source: RIKEN. “Toward a clearer diagnosis of chronic fatigue syndrome.” ScienceDaily. ScienceDaily, 4 April 2014. https://www.sciencedaily.com/releases/2014/04/140404085538.htm

 

Neuroinflammation in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: An ¹¹C-(R)-PK11195 PET Study

Abstract:

Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a disease characterized by chronic, profound, disabling, and unexplained fatigue. Although it is hypothesized that brain inflammation is involved in the pathophysiology of CFS/ME, there is no direct evidence of neuroinflammation in patients with CFS/ME. Activation of microglia or astrocytes is related to neuroinflammation. (11)C-(R)-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carboxamide ((11)C-(R)-PK11195) is a ligand of PET for a translocator protein that is expressed by activated microglia or astrocytes. We used (11)C-(R)-PK11195 and PET to investigate the existence of neuroinflammation in CFS/ME patients.

METHODS: Nine CFS/ME patients and 10 healthy controls underwent (11)C-(R)-PK11195 PET and completed questionnaires about fatigue, fatigue sensation, cognitive impairments, pain, and depression. To measure the density of translocator protein, nondisplaceable binding potential (BP(ND)) values were determined using linear graphical analysis with the cerebellum as a reference region.

RESULTS: The BP(ND) values of (11)C-(R)-PK11195 in the cingulate cortex, hippocampus, amygdala, thalamus, midbrain, and pons were 45%-199% higher in CFS/ME patients than in healthy controls. In CFS/ME patients, the BP(ND) values of (11)C-(R)-PK11195 in the amygdala, thalamus, and midbrain positively correlated with cognitive impairment score, the BP(ND) values in the cingulate cortex and thalamus positively correlated with pain score, and the BP(ND) value in the hippocampus positively correlated with depression score.

CONCLUSION: Neuroinflammation is present in widespread brain areas in CFS/ME patients and was associated with the severity of neuropsychologic symptoms. Evaluation of neuroinflammation in CFS/ME patients may be essential for understanding the core pathophysiology and for developing objective diagnostic criteria and effective medical treatments.

© 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

 

Source: Nakatomi Y, Mizuno K, Ishii A, Wada Y, Tanaka M, Tazawa S, Onoe K, Fukuda S, Kawabe J, Takahashi K, Kataoka Y, Shiomi S, Yamaguti K, Inaba M, Kuratsune H, Watanabe Y. Neuroinflammation in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: An ¹¹C-(R)-PK11195 PET Study. J Nucl Med. 2014 Jun;55(6):945-50. doi: 10.2967/jnumed.113.131045. Epub 2014 Mar 24. http://jnm.snmjournals.org/content/55/6/945.long (Full article)

 

Brain 5-HT1A receptor binding in chronic fatigue syndrome measured using positron emission tomography and [11C]WAY-100635

Abstract:

BACKGROUND: Research from neuroendocrine challenge and other indirect studies has suggested increased central 5-HT function in chronic fatigue syndrome (CFS) and increased 5-HT1A receptor sensitivity. We assessed brain 5-HT1A receptor binding potential directly using the specific radioligand [11C]WAY-100635 and positron emission tomography (PET).

METHODS: We selected 10 patients from a tertiary referral clinic who fulfilled the CDC consensus criteria for CFS. To assemble a homogenous group and avoid confounding effects, we enrolled only subjects who were completely medication-free and did not have current comorbid psychiatric illness. We also scanned 10 healthy control subjects.

RESULTS: There was a widespread reduction in 5-HT1A receptor binding potential in CFS relative to control subjects. This was particularly marked in the hippocampus bilaterally, where a 23% reduction was observed.

CONCLUSIONS: There is evidence of decreased 5-HT1A receptor number or affinity in CFS. This may be a primary feature of CFS, related to the underlying pathophysiology, or a finding secondary to other processes, such as previous depression, other biological changes or the behavioral consequences of CFS.

 

Source: Cleare AJ, Messa C, Rabiner EA, Grasby PM. Brain 5-HT1A receptor binding in chronic fatigue syndrome measured using positron emission tomography and [11C]WAY-100635. Biol Psychiatry. 2005 Feb 1;57(3):239-46. http://www.ncbi.nlm.nih.gov/pubmed/15691524

 

Reduction of serotonin transporters of patients with chronic fatigue syndrome

Abstract:

To assess the involvement of serotonin in the symptoms of chronic fatigue syndrome, we investigated the serotonergic neurotransmitter system of chronic fatigue syndrome patients by the positron emission tomography (PET).

Here we show that the density of serotonin transporters (5-HTTs) in the brain, as determined by using a radiotracer, [C](+)McN5652, was significantly reduced in the rostral subdivision of the anterior cingulate as compared with that in normal volunteers. This subdivision is different from that in the dorsal anterior cingulate in which binding potential values of individual patient showed a weak negative correlation with self-reported pain score of the patients.

Therefore, an alteration of serotonergic system in the rostral anterior cingulate plays a key role in pathophysiology of chronic fatigue syndrome.

 

Source: Yamamoto S, Ouchi Y, Onoe H, Yoshikawa E, Tsukada H, Takahashi H, Iwase M, Yamaguti K, Kuratsune H, Watanabe Y. Reduction of serotonin transporters of patients with chronic fatigue syndrome. Neuroreport. 2004 Dec 3;15(17):2571-4. http://www.ncbi.nlm.nih.gov/pubmed/15570154

 

Observer independent analysis of cerebral glucose metabolism in patients with chronic fatigue syndrome

Abstract:

OBJECTIVES: To evaluate cerebral glucose metabolism, assessed by 18-fluorodeoxyglucose positron emission tomography (FDG-PET), in patients with chronic fatigue syndrome (CFS), using an observer independent analytical approach; and to characterise any observed alterations by correlating them with neuropsychological deficits.

METHODS: 26 patients (13 female, 13 male) were examined. They all fulfilled the CDC diagnostic criteria for CFS. Their ages ranged from 26 to 61 years (mean (SD) age, 43 (9.3) years). They underwent extensive psychometric testing including the hospital anxiety and depression scale (HADS) and the short form 36 item health questionnaire (SF-36). Brain FDG-PET was done in all the subjects. After stereotactic normalisation, single subject comparisons with an age and sex matched normal database (n = 18) and a group comparison between the patients and normal controls were undertaken, along with additional correlation analyses between brain metabolism and psychometric test scores.

RESULTS: 12 of the 26 patients showed no significant decrease in FDG uptake compared with the controls. Of the remaining 14, 12 showed hypometabolism bilaterally in the cingulate gyrus and the adjacent mesial cortical areas. Five of these 12 patients also had decreased metabolism in the orbitofrontal cortex. The two remaining patients had hypometabolism in the cuneus/praecuneus. Correlation analyses showed significant correlations between some test scores (anxiety, depression, health related quality of life) but not fatigue and regional reductions in glucose metabolism.

CONCLUSIONS: Although abnormalities in FDG-PET were only detectable in approximately half the CFS patients examined, and no specific pattern for CFS could be identified, PET may provide valuable information in helping to separate CFS patients into subpopulations with and without apparent alterations in the central nervous system.

 

Source: Siessmeier T, Nix WA, Hardt J, Schreckenberger M, Egle UT, Bartenstein P. Observer independent analysis of cerebral glucose metabolism in patients with chronic fatigue syndrome. J Neurol Neurosurg Psychiatry. 2003 Jul;74(7):922-8. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1738575/ (Full article)

 

 

Brain positron emission tomography (PET) in chronic fatigue syndrome: preliminary data

Abstract:

Chronic fatigue syndrome (CFS) has been widely studied by neuroimaging techniques in recent years with conflicting results. In particular, using single-photon emission computed tomography (SPECT) and perfusion tracers, hypoperfusion has been found in several brain regions, although the findings vary across research centers. The objective of this study was to investigate brain metabolism of patients affected by CFS, using [18F]fluorine-deoxyglucose (18FDG) positron emission tomography (PET).

We performed 18FDG PET in 18 patients who fulfilled the criteria of the working case definition of CFS. Twelve of the 18 patients were females; the mean age was 34 +/- 15 years (range, 15-68) and the median time from CFS diagnosis was 16 months (range, 9-138). Psychiatric diseases and anxiety/neurosis were excluded in all CFS patients.

CFS patients were compared with a group of 6 patients affected by depression (according to DSM IV-R) and 6 age-matched healthy controls. The CFS patients were not taking any medication at the time of PET, and depressed patients were drug-free for at least 1 week before the PET examination. The PET images examined 22 cortical and subcortical areas.

CFS patients showed a significant hypometabolism in right mediofrontal cortex (P = 0.010) and brainstem (P = 0.013) in comparison with the healthy controls. Moreover, comparing patients affected by CFS and depression, the latter group showed a significant and severe hypometabolism of the medial and upper frontal regions bilaterally (P = 0.037-0.001), whereas the metabolism of brain stem was normal.

Brain 18FDG PET showed specific metabolism abnormalities in patients with CFS in comparison with both healthy controls and depressed patients. The most relevant result of our study is the brain stem hypometabolism which, as reported in a perfusion SPECT study, seems to be a marker for the in vivo diagnosis of CFS.

 

Source: Tirelli U, Chierichetti F, Tavio M, Simonelli C, Bianchin G, Zanco P, Ferlin G. Brain positron emission tomography (PET) in chronic fatigue syndrome: preliminary data. Am J Med. 1998 Sep 28;105(3A):54S-58S. http://www.ncbi.nlm.nih.gov/pubmed/9790483