Muscle metabolism with blood flow restriction in chronic fatigue syndrome

Abstract:

The purpose of this study was to determine whether chronic fatigue syndrome (CFS) is associated with reduced blood flow and muscle oxidative metabolism. Patients with CFS according to Centers for Disease Control criteria (n = 19) were compared with normal sedentary subjects (n = 11).

Muscle blood flow was measured in the femoral artery with Doppler ultrasound after exercise. Muscle metabolism was measured in the medial gastrocnemius muscle with (31)P-magnetic resonance spectroscopy. Muscle oxygen saturation and blood volume were measured using near-infrared spectroscopy. CFS and controls were not different in hyperemic blood flow or phosphocreatine recovery rate. Cuff pressures of 50, 60, 70, 80, and 90 mmHg were used to partially restrict blood flow during recovery. All pressures reduced blood flow and oxidative metabolism, with 90 mmHg reducing blood flow by 46% and oxidative metabolism by 30.7% in CFS patients.

Hyperemic blood flow during partial cuff occlusion was significantly reduced in CFS patients (P < 0.01), and recovery of oxygen saturation was slower (P < 0.05). No differences were seen in the amount of reduction in metabolism with partially reduced blood flow.

In conclusion, CFS patients showed evidence of reduced hyperemic flow and reduced oxygen delivery but no evidence that this impaired muscle metabolism. Thus CFS patients might have altered control of blood flow, but this is unlikely to influence muscle metabolism. Furthermore, abnormalities in muscle metabolism do not appear to be responsible for the CFS symptoms.

 

Source: McCully KK, Smith S, Rajaei S, Leigh JS Jr, Natelson BH. Muscle metabolism with blood flow restriction in chronic fatigue syndrome. J Appl Physiol (1985). 2004 Mar;96(3):871-8. Epub 2003 Oct 24. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680353/ (Full article)

 

Blood flow and muscle metabolism in chronic fatigue syndrome

Abstract:

The purpose of this study was to determine if chronic fatigue syndrome (CFS) is associated with reduced blood flow and oxidative delivery to skeletal muscle. Patients with CFS according to CDC (Center for Disease Control) criteria ( n =19) were compared with normal sedentary subjects ( n =11). Muscle blood flow was measured with Doppler ultrasound after cuff ischaemia and exercise. Muscle oxygen delivery was measured as the rate of post-exercise and post-ischaemic oxygen-haem resaturation. Oxygen-haem resaturation was measured in the medial gastrocnemius muscle using continuous wavelength near-IR spectroscopy. Muscle metabolism was measured using (31)P magnetic resonance spectroscopy. CFS patients and controls were not different in the peak blood flow after cuff ischaemia, the rate of recovery of phosphocreatine after submaximal exercise, and the rate of recovery of oxygen saturation after cuff ischaemia. In conclusion, CFS patients showed no deficit in blood flow or oxidative metabolism. This suggests that CFS symptoms do not require abnormal peripheral function.

 

Source: McCully KK, Smith S, Rajaei S, Leigh JS Jr, Natelson BH. Blood flow and muscle metabolism in chronic fatigue syndrome.  Clin Sci (Lond). 2003 Jun;104(6):641-7. http://www.ncbi.nlm.nih.gov/pubmed/12589704

 

Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is a poorly understood disease characterized by mental and physical fatigue, most often observed in young white females. Muscle pain at rest, exacerbated by exercise, is a common symptom. Although a specific defect in muscle metabolism has not been clearly defined, yet several studies report altered oxidative metabolism.

In this study, we detected oxidative damage to DNA and lipids in muscle specimens of CFS patients as compared to age-matched controls, as well as increased activity of the antioxidant enzymes catalase, glutathione peroxidase, and transferase, and increases in total glutathione plasma levels. From these results we hypothesize that in CFS there is oxidative stress in muscle, which results in an increase in antioxidant defenses.

Furthermore, in muscle membranes, fluidity and fatty acid composition are significantly different in specimens from CFS patients as compared to controls and to patients suffering from fibromyalgia. These data support an organic origin of CFS, in which muscle suffers oxidative damage.

 

Source: Fulle S, Mecocci P, Fanó G, Vecchiet I, Vecchini A, Racciotti D, Cherubini A, Pizzigallo E, Vecchiet L, Senin U, Beal MF. Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome. Free Radic Biol Med. 2000 Dec 15;29(12):1252-9. http://www.ncbi.nlm.nih.gov/pubmed/11118815

 

Impaired oxygen delivery to muscle in chronic fatigue syndrome

Abstract:

The purpose of this study was to determine if chronic fatigue syndrome (CFS) is associated with reduced oxygen delivery to muscles. Patients with CFS according to CDC (Center for Disease Control) criteria (n=20) were compared with normal sedentary subjects (n=12).

Muscle oxygen delivery was measured as the rate of post-exercise and post-ischaemia oxygen-haem resaturation. Oxygen-haem resaturation was measured in the medial gastrocnemius muscle using continuous-wavelength near-IR spectroscopy. Phosphocreatine resynthesis was measured simultaneously using (31)P magnetic resonance spectroscopy.

The time constant of oxygen delivery was significantly reduced in CFS patients after exercise (46.5+/-16 s; mean+/-S.D.) compared with that in controls (29.4+/-6.9 s). The time constant of oxygen delivery was also reduced (20.0+/-12 s) compared with controls (12.0+/-2.8 s) after cuff ischaemia. Oxidative metabolism was also reduced by 20% in CFS patients, and a significant correlation was found between oxidative metabolism and recovery of oxygen delivery.

In conclusion, oxygen delivery was reduced in CFS patients compared with that in sedentary controls. This result is consistent with previous studies showing abnormal autonomic control of blood flow. Reduced oxidative delivery in CFS patients could be specifically related to CFS, or could be a non-specific effect of reduced activity levels in these patients. While these results suggest that reduced oxygen delivery could result in reduced oxidative metabolism and muscle fatigue, further studies will be needed to address this issue.

Comment in: Chronic fatigue syndrome: the physiology of people on the low end of the spectrum of physical activity? [Clin Sci (Lond). 1999]

 

Source: McCully KK, Natelson BH. Impaired oxygen delivery to muscle in chronic fatigue syndrome. Clin Sci (Lond). 1999 Nov;97(5):603-8; discussion 611-3. http://www.ncbi.nlm.nih.gov/pubmed/10545311

 

Reduced oxidative muscle metabolism in chronic fatigue syndrome

Abstract:

The purpose of this study was to determine if chronic fatigue syndrome (CSF) is characterized by abnormalities in oxidative muscle metabolism. Patients with CFS according to Centers for Disease Control (CDC) criteria (n = 22) were compared to normal sedentary subjects (n = 15).

CFS patients were also tested before and 2 days after a maximal treadmill test. Muscle oxidative capacity was measured as the maximal rate of postexercise phosphocreatine (PCr) resynthesis using the ADP model (Vmax) in the calf muscles using 31P magnetic resonance spectroscopy. Vmax was significantly reduced in CFS patients (39.6 +/- 2.8 mmol/L/min, mean +/- SE) compared to controls (53.8 +/- 2.8 mmol/L/min). Two days postexercise there was no change in resting inorganic phosphate (Pi)/PCr or Vmax in the CFS patients (n = 14).

In conclusion, oxidative metabolism is reduced in CFS patients compared to sedentary controls. In addition, a single bout of strenuous exercise did not cause a further reduction in oxidative metabolism, or alter resting Pi/PCr ratios.

Comment in: Chronic fatigue syndrome and skeletal muscle mitochondrial function. [Muscle Nerve. 1997]

 

Source: McCully KK, Natelson BH, Iotti S, Sisto S, Leigh JS Jr. Reduced oxidative muscle metabolism in chronic fatigue syndrome. Muscle Nerve. 1996 May;19(5):621-5. http://www.ncbi.nlm.nih.gov/pubmed/8618560