THE ROLE OF α7 NICOTINIC ACETYLCHOLINE RECEPTORS IN POST-ACUTE SEQUELAE OF COVID-19

Abstract:

Post-Acute Sequelae of COVID-19 or Long COVID becomes evident some weeks to months following acute COVID-19. Symptoms include cognitive impairment and varying degrees of memory loss with no definitive etiologies or efficacious therapies forthcoming even after four years of the SARS-Cov2 pandemic virus. The aim of this review is to demonstrate the important role of α7 nicotinic acetylcholine receptors in both acute COVID-19 and Long COVID.

Evidence presented implicates immune mechanisms stimulated by SARS-Cov-2 S-protein fragment 674-685 that possesses homology with α7-specific ligands. Cognitive dysfunctions observed in Long COVID patients may be derived from anti-idiotypic α7-specific antibodies stimulated by (674-685)-specific antibodies. Therapeutic interventions capable of neutralizing these antibodies and restoring full functions of α7 nicotinic acetylcholine receptors appear to be of paramount importance in post-acute sequelae of COVID-19.

Source: Skok M. THE ROLE OF α7 NICOTINIC ACETYLCHOLINE RECEPTORS IN POST-ACUTE SEQUELAE OF COVID-19. Int J Biochem Cell Biol. 2024 Jan 11:106519. doi: 10.1016/j.biocel.2024.106519. Epub ahead of print. PMID: 38218363. https://www.sciencedirect.com/science/article/abs/pii/S1357272524000104

Is the post-COVID-19 syndrome a severe impairment of acetylcholine-orchestrated neuromodulation that responds to nicotine administration?

Abstract:

Following a SARS-CoV-2 infection, many individuals suffer from post-COVID-19 syndrome. It makes them unable to proceed with common everyday activities due to weakness, memory lapses, pain, dyspnea and other unspecific physical complaints. Several investigators could demonstrate that the SARS-CoV-2 related spike glycoprotein (SGP) attaches not only to ACE-2 receptors but also shows DNA sections highly affine to nicotinic acetylcholine receptors (nAChRs).

The nAChR is the principal structure of cholinergic neuromodulation and is responsible for coordinated neuronal network interaction. Non-intrinsic viral nAChR attachment compromises integrative interneuronal communication substantially. This explains the cognitive, neuromuscular and mood impairment, as well as the vegetative symptoms, characterizing post-COVID-19 syndrome. The agonist ligand nicotine shows an up to 30-fold higher affinity to nACHRs than acetylcholine (ACh).

We therefore hypothesize that this molecule could displace the virus from nAChR attachment and pave the way for unimpaired cholinergic signal transmission. Treating several individuals suffering from post-COVID-19 syndrome with a nicotine patch application, we witnessed improvements ranging from immediate and substantial to complete remission in a matter of days.

Source: Leitzke, M. Is the post-COVID-19 syndrome a severe impairment of acetylcholine-orchestrated neuromodulation that responds to nicotine administration?. Bioelectron Med 9, 2 (2023). https://doi.org/10.1186/s42234-023-00104-7 (Full text)

Transcription profile analysis of vastus lateralis muscle from patients with chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is a disabling condition characterized by unexplained chronic fatigue that impairs normal activities. Many body systems are affected and etiology has not yet been identified. In addition to immunological and psychological aspects, skeletal muscle symptoms are prominent in CFS patients.

In an effort to establish which pathways might be involved in the onset and development of muscle symptoms, we used global transcriptome analysis to identify genes that were differentially expressed in the vastus lateralis muscle of female and male CFS patients.

We found that the expression of genes that play key roles in mitochondrial function and oxidative balance, including superoxide dismutase 2, were altered, as were genes involved in energy production, muscular trophism and fiber phenotype determination. Importantly, the expression of a gene encoding a component of the nicotinic cholinergic receptor binding site was reduced, suggesting impaired neuromuscular transmission. We argue that these major biological processes could be involved in and/or responsible for the muscle symptoms of CFS.

Source: Pietrangelo T, Mancinelli R, Toniolo L, Montanari G, Vecchiet J, Fanò G, Fulle S. Transcription profile analysis of vastus lateralis muscle from patients with chronic fatigue syndrome. Int J Immunopathol Pharmacol. 2009 Jul-Sep;22(3):795-807. https://www.ncbi.nlm.nih.gov/pubmed/19822097