Abstract:
Purpose: Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients experience multiple complex symptoms, potentially linked to imbalances in brain neurochemicals. This study aims to measure brain neurochemical levels in long COVID and ME/CFS patients as well as healthy controls to investigate associations with severity measures.
Methods: Magnetic resonance spectroscopy (MRS) data was acquired with a 3T Prisma MRI scanner. We measured absolute levels of brain neurochemicals in the posterior cingulate cortex in long COVID (n=17), ME/CFS (n=17), and healthy controls (n=10) using Osprey software. The statistical analyses were performed using SPSS version 29. Age and sex were included as nuisance covariates.
Results: Glutamate levels were significantly higher in long COVID (p=0.02) and ME/CFS (p=0.017) than in healthy controls. No significant difference was found between the two patient cohorts. Additionally, N-acetyl-aspartate levels were significantly higher in long COVID patients (p=0.012). Importantly, brain neurochemical levels were associated with self-reported severity measures in long COVID and ME/CFS.
Conclusion: Our study identified significantly elevated Glutamate and N-acetyl-aspartate levels in long COVID and ME/CFS patients compared with healthy controls. No significant differences in brain neurochemicals were observed between the two patient cohorts, suggesting a potential overlap in their underlying pathology. These findings suggest that imbalanced neurochemicals contribute to the complex symptoms experienced by long COVID and ME/CFS patients.
Source: Thapaliya K, Marshall-Gradisnik S, Eaton-Fitch N, Eftekhari Z, Inderyas M, Barnden L. Imbalanced Brain Neurochemicals in long COVID and ME/CFS: A Preliminary Study using MRI. Am J Med. 2024 Apr 6:S0002-9343(24)00216-X. doi: 10.1016/j.amjmed.2024.04.007. Epub ahead of print. PMID: 38588934. https://www.sciencedirect.com/science/article/pii/S000293432400216X (Full text)