Genomic polymorphism, growth properties, and immunologic variations in human herpesvirus-6 isolates

Abstract:

Fifteen human herpesvirus-6 (HHV-6) isolates from normal donors and patients with AIDS, systemic lupus erythematosis, chronic fatigue syndrome, collagen-vascular disease, leukopenia, bone marrow transplants, Exanthem subitum (roseola), and atypical polyclonal lymphoproliferation were studied for their tropism to fresh human cord blood mononuclear cells, growth in continuous T cell lines, reactivity to monoclonal antibodies, and by restriction enzyme banding patterns. All isolates replicated efficiently in human cord blood mononuclear cells, but mitogen stimulation of the cells prior to infection was required. The ability to infect continuous T-cell lines varied with the isolates. Isolates similar to GS prototype infected HSB2 and Sup T1 cells and did not infect Molt-3 cells, whereas isolates similar to Z-29 infected Molt-3 cells but not HSB2 and Sup T1 cells. Some of the monoclonal antibodies directed against the HHV-6 (GS) isolate showed reactivity with all isolates tested, but others only reacted with HHV-6 isolates similar to the GS isolate and not with those similar to Z-29 isolate. Restriction enzyme analysis using EcoRI, BamHI, and HindIII revealed that HHV-6 isolates from roseola, bone marrow transplant, leukopenia, and an HIV-1-positive AIDS patient from Zaire (Z-29) were closely related but distinct from GS type HHV-6 isolates. Based on the above findings, we propose that, like herpes simplex virus types 1 and 2, the 15 HHV-6 isolates analyzed can be divided into group A (GS type) and group B (Z-29 type).

 

Source: Ablashi DV, Balachandran N, Josephs SF, Hung CL, Krueger GR, Kramarsky B, Salahuddin SZ, Gallo RC. Genomic polymorphism, growth properties, and immunologic variations in human herpesvirus-6 isolates. Virology. 1991 Oct;184(2):545-52. http://www.ncbi.nlm.nih.gov/pubmed/1653487

 

Immunologic abnormalities in chronic fatigue syndrome

Abstract:

The chronic fatigue syndrome (CFS), formerly known as chronic Epstein-Barr virus syndrome, is a clinical state of some complexity and uncertain etiology. In order to characterize in a comprehensive manner the status of laboratory markers associated with cellular immune function in patients with this syndrome, 30 patients with clinically defined CFS were studied.

All of the subjects were found to have multiple abnormalities in these markers. The most consistent immunological abnormality detected among these patients, when compared with normal controls, was low natural killer (NK) cell cytotoxicity. The number of NK cells, as defined by reactivity with monoclonal antibody NKH.1 (CD56), was elevated, but the killing of K562 tumor cells per CD56 cell was significantly diminished.

Lymphoproliferative responses after stimulation with phytohemagglutinin and pokeweed mitogen were decreased in most patients when compared with those in normal controls, as was the production of gamma interferon following mitogen stimulation. Lymphocyte phenotypic marker analysis of peripheral blood lymphocytes showed that there were significant differences between patients with CFS and controls.

There was an increase in the percentage of suppressor-cytotoxic T lymphocytes, CD8, and a proportionally larger increase in the number of CD8 cells expressing the class II activation marker. Most patients had an elevated number of CD2 cells which expressed the activation marker CDw26. The numbers of CD4 cells and the helper subset of CD4+CD29+ cells in patients with CFS were not different from those in controls. There was, however, a significant decrease in the suppressor inducer subset of CD4+ CD45RA+ cells. The number of B cells, CD20 and CD21, were elevated, as were the numbers of a subset of B cells which coexpressed CD20 and CD5.

The patterns of immune marker abnormalities observed was compatible with a chronic viral reactivation syndrome.

 

Source: Klimas NG, Salvato FR, Morgan R, Fletcher MA. Immunologic abnormalities in chronic fatigue syndrome. J Clin Microbiol. 1990 Jun;28(6):1403-10. http://www.ncbi.nlm.nih.gov/pubmed/2166084

Note: You can read the full article herehttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC267940/