Cluster analysis of long COVID symptoms for deciphering a syndrome and its long-term consequence

Abstract:

The long-term symptoms of COVID-19 are the subject of public and scientific discussions. Understanding how those long COVID symptoms co-occur in clusters of syndromes may indicate the pathogenic mechanisms of long COVID. Our study objective was to cluster the different long COVID symptoms. We included persons who had a COVID-19 and assessed long-term symptoms (at least 4 weeks after first symptoms). Hierarchical clustering was applied to the symptoms as well as to the participants based on the Euclidean distance h of the log-values of the answers on symptom severity. The distribution of clusters within our cohort is shown in a heat map.

From September 2021 to November 2023, 2371 persons with persisting long COVID symptoms participated in the study. Self-assessed long COVID symptoms were assigned to three symptom clusters. Cluster A unites rheumatological and neurological symptoms, cluster B includes neuro-psychological symptoms together with cardiorespiratory symptoms, and a third cluster C shows an association of general infection signs, dermatological and otology symptoms. A high proportion of the participants (n = 1424) showed symptoms of all three clusters.

Clustering of long COVID symptoms reveals similarities to the symptomatology of already described syndromes such as the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) or rheumatological autoinflammatory diseases. Further research may identify serological parameters or clinical risk factors associated with the shown clusters and might improve our understanding of long COVID as a systemic disease. Furthermore, multimodal treatments can be developed and scaled for symptom clusters and associated impairments.

Source: Niewolik J, Mikuteit M, Klawitter S, Schröder D, Stölting A, Vahldiek K, Heinemann S, Müller F, Behrens G, Klawonn F, Dopfer-Jablonka A, Steffens S. Cluster analysis of long COVID symptoms for deciphering a syndrome and its long-term consequence. Immunol Res. 2024 Apr 16. doi: 10.1007/s12026-024-09465-w. Epub ahead of print. PMID: 38627327. https://link.springer.com/article/10.1007/s12026-024-09465-w (Full text)

Cluster Analysis to Identify Long COVID Phenotypes Using 129Xe Magnetic Resonance Imaging: A Multi-centre Evaluation

Abstract:

Background Long COVID impacts ∼10% of people diagnosed with COVID-19, yet the pathophysiology driving ongoing symptoms is poorly understood. We hypothesised that 129Xe magnetic resonance imaging (MRI) could identify unique pulmonary phenotypic subgroups of long COVID, therefore we evaluated ventilation and gas exchange measurements with cluster analysis to generate imaging-based phenotypes.

Methods COVID-negative controls and participants who previously tested positive for COVID-19 underwent 129XeMRI ∼14-months post-acute infection across three centres. Long COVID was defined as persistent dyspnea, chest tightness, cough, fatigue, nausea and/or loss of taste/smell at MRI; participants reporting no symptoms were considered fully-recovered. 129XeMRI ventilation defect percent (VDP) and membrane (Mem)/Gas, red blood cell (RBC)/Mem and RBC/Gas ratios were used in k-means clustering for long COVID, and measurements were compared using ANOVA with post-hoc Bonferroni correction.

Results We evaluated 135 participants across three centres: 28 COVID-negative (40±16yrs), 34 fully-recovered (42±14yrs) and 73 long COVID (49±13yrs). RBC/Mem (p=0.03) and FEV1 (p=0.04) were different between long- and COVID-negative; FEV1 and all other pulmonary function tests (PFTs) were within normal ranges. Four unique long COVID clusters were identified compared with recovered and COVID-negative. Cluster1 was the youngest with normal MRI and mild gas-trapping; Cluster2 was the oldest, characterised by reduced RBC/Mem but normal PFTs; Cluster3 had mildly increased Mem/Gas with normal PFTs; and Cluster4 had markedly increased Mem/Gas with concomitant reduction in RBC/Mem and restrictive PFT pattern.

Conclusion We identified four 129XeMRI long COVID phenotypes with distinct characteristics. 129XeMRI can dissect pathophysiologic heterogeneity of long COVID to enable personalised patient care.

Source: Rachel L EddyDavid MummyShuo ZhangHaoran DaiAryil BechtelAlexandra SchmidtBradie FrizzellFiroozeh V GerayeliJonathon A LeipsicJanice M LeungBastiaan DriehuysLoretta G QueMario CastroDon D SinPeter J Niedbalski. Cluster Analysis to Identify Long COVID Phenotypes Using 129Xe Magnetic Resonance Imaging: A Multi-centre Evaluation.

Long COVID symptoms in exposed and infected children, adolescents and their parents one year after SARS-CoV-2 infection: A prospective observational cohort study

Abstract:

Background: Long COVID in children and adolescents remains poorly understood due to a lack of well-controlled studies with long-term follow-up. In particular, the impact of the family context on persistent symptoms following SARS-CoV-2 infection remains unknown. We examined long COVID symptoms in a cohort of infected children, adolescents, and adults and their exposed but non-infected household members approximately 1 year after infection and investigated clustering of persistent symptoms within households.

Methods: 1267 members of 341 households (404 children aged <14 years, 140 adolescents aged 14-18 years and 723 adults) were categorized as having had either a SARS-CoV-2 infection or household exposure to SARS-CoV-2 without infection, based on three serological assays and history of laboratory-confirmed infection. Participants completed questionnaires assessing the presence of long COVID symptoms 11-12 months after infection in the household using online questionnaires.

Findings: The prevalence of moderate or severe persistent symptoms was statistically significantly higher in infected than in exposed women (36.4% [95% CI: 30.7-42.4%] vs 14.2% [95% CI: 8.7-21.5%]), infected men (22.9% [95% CI: 17.9-28.5%] vs 10.3% [95% CI: 5.8-16.9%]) and infected adolescent girls (32.1% 95% CI: 17.2-50.5%] vs 8.9% [95%CI: 3.1-19.8%]). However, moderate or severe persistent symptoms were not statistically more common in infected adolescent boys aged 14-18 (9.7% [95% CI: 2.8-23.6%] or in infected children <14 years (girls: 4.3% [95% CI: 1.2-11.0%]; boys: 3.7% [95% CI: 1.1-9.6%]) than in their exposed counterparts (adolescent boys: 0.0% [95% CI: 0.0-6.7%]; girls < 14 years: 2.3% [95% CI: 0·7-6·1%]; boys < 14 years: 0.0% [95% CI: 0.0-2.0%]). The number of persistent symptoms reported by individuals was associated with the number of persistent symptoms reported by their household members (IRR=1·11, p=·005, 95% CI [1.03-1.20]).

Interpretation: In this controlled, multi-centre study, infected men, women and adolescent girls were at increased risk of negative outcomes 11-12 months after SARS-CoV-2 infection. Amongst non-infected adults, prevalence of negative outcomes was also high. Prolonged symptoms tended to cluster within families, suggesting family-level interventions for long COVID could prove useful.

Funding: Ministry of Science, Research and the Arts, Baden-Württemberg, Germany.

Source: Haddad A, Janda A, Renk H, Stich M, Frieh P, Kaier K, Lohrmann F, Nieters A, Willems A, Huzly D, Dulovic A, Schneiderhan-Marra N, Jacobsen EM, Fabricius D, Zernickel M, Stamminger T, Bode SFN, Himpel T, Remppis J, Engel C, Peter A, Ganzenmueller T, Hoffmann GF, Haase B, Kräusslich HG, Müller B, Franz AR, Debatin KM, Tönshoff B, Henneke P, Elling R. Long COVID symptoms in exposed and infected children, adolescents and their parents one year after SARS-CoV-2 infection: A prospective observational cohort study. EBioMedicine. 2022 Sep 22;84:104245. doi: 10.1016/j.ebiom.2022.104245. Epub ahead of print. PMID: 36155957; PMCID: PMC9495281. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495281/ (Full text)