Low Vasopressin in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (P4-4.006)

Abstract:

Objective: To shed light on the pathophysiology of water homeostasis in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), classified by WHO as a neurological disease (ICD 10 code G933).

Background: The complex symptomatology of ME/CFS includes signs suggesting abnormal water homeostasis and hypovolemia. Since many patients report polyuria-polydipsia, we conducted an observational series of plasma and urine osmolality as well as plasma levels of vasopressin (VP) in consecutive patients diagnosed with ME/CFS according to the Canadian Consensus Criteria.

Design/Methods: Plasma and urine osmolality (P-Osm and U-Osm, respectively) and plasma VP levels were measured in 111 patients after overnight fasting and 10-hour fluid deprivation. The clinical routine also included brain MRI and blood chemistry.

Results: Following the fluid deprivation P-Osm was above normal (>292 mOsm/kg) in 61 patients (55.0%) and U-Osm below normal (< 750 mOsm/kg) in 74 patients (66.7%). VP-levels were below the level of detection (<1.6 pg/mL) in 91 patients (82.0%). A normal level of VP in relation to their P-Osm was found in 11 patients (9.9 %). The state resembling a central type of diabetes insipidus (cDI) would in the absence of hypophyseal imaging findings and blood chemistry consistent with any other hypophyseal hormonal defect be classified as idiopathic.

Conclusions: Our findings suggest that deficiency of vasopressin secretion is a fundamental measurable part of the disease mechanisms, which may underlie a number of symptoms in ME/CFS, including the common complaint of orthostatic intolerance.

Source: Helena Huhmar, Lauri Soinne, Per Sjögren, Bo Christer Bertilson, Per Hamid Ghatan, Björn Bragée, and Olli Polo. Low Vasopressin in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (P4-4.006) Neurology, April 9, 2024 issue 102 (17_supplement_1) https://doi.org/10.1212/WNL.000000000020576 https://www.neurology.org/doi/10.1212/WNL.0000000000205761

Autonomic Nervous System Regulation Effects of Epipharyngeal Abrasive Therapy for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Associated With Chronic Epipharyngitis

Abstract:

Objective: To evaluate the autonomic nerve stimulation effect of epipharyngeal abrasive therapy (EAT) on myalgic encephalomyelitis/chronic fatigue syndrome (CFS) associated with chronic epipharyngitis. Heart rate variability analysis was performed. The study was conducted by analyzing heart rate variability.

Subjects and methods: A total of 29 patients with chronic epipharyngitis who underwent EAT from July 2017 to April 2018 were classified into two groups: 11 patients in the CFS group and 18 patients in the control group without CFS. The patients were classified as phase 1 during bed rest, phase 2 during nasal endoscopy, phase 3 during nasal abrasion, and phase 4 during oral abrasion. Electrocardiographic recordings were made, and autonomic function was compared and evaluated by measuring heart rate, coefficient of variation on R-R interval (CVRR), coefficient of component variance high frequency (ccvHF), and low frequency/ccvHF ratio (L/H) for each of the four phases. The Shapiro-Wilk test was performed to confirm the normality of the two groups, and the parametric test was selected. A repeated measures analysis of variance was performed to assess changes over time between the four events in the two groups. Multiple comparisons were corrected by the Bonferroni method. Comparisons between resting data and three events within each group were performed by paired t-test.

Results: The CFS group had an increased baseline heart rate compared to the control group, and the CFS group had a greater increase in parasympathetic activity and a decrease in heart rate with nasal abrasion. Oral abrasion elicited a pharyngeal reflex and increased heart rate and both sympathetic and parasympathetic activity.

Conclusion: The CFS group was in a state of dysautonomia due to autonomic overstimulation, with an elevated baseline heart rate. The CFS group was considered to be in a state of impaired autonomic homeostasis, with an increased likelihood that overstimulation would induce a pathological vagal reflex and the Reilly phenomenon would develop. The direct effects of EAT on the autonomic nervous system were considered to be vagus nerve stimulation and the regulation of autonomic function by opposing stimulation input to sympathetic and parasympathetic nerves. As an indirect effect, bleeding from the epipharyngeal mucosa due to abrasion was thought to restore the function of the cerebral venous and lymphatic excretory systems and the autonomic nerve center.

Source: Hirobumi I. Autonomic Nervous System Regulation Effects of Epipharyngeal Abrasive Therapy for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Associated With Chronic Epipharyngitis. Cureus. 2023 Jan 14;15(1):e33777. doi: 10.7759/cureus.33777. PMID: 36655156; PMCID: PMC9840732. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840732/ (Full text)

Converging Evidence of Similar Symptomatology of ME/CFS and PASC Indicating Multisystemic Dyshomeostasis

Abstract:

The purpose of this article is to review the evidence of similar symptomatology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and post-acute sequelae of SARS-CoV-2 infection (PASC).
Reanalysis of data from a study by Jason comparing symptom reports from two groups of ME/CFS and PASC patients shows a notably similar symptomatology. Symptom scores of the PASC group and the ME/CFS group correlated 0.902 (p < 0.0001) across items. The hypothesis is presented that ME/CFS and PASC are caused by a chronic state of multisystemic disequilibrium including endocrinological, immunological, and/or metabolic changes.
The hypothesis holds that a changed set point persistently pushes the organism towards a pathological dysfunctional state which fails to reset. To use an analogy of a thermostat, if the ‘off switch’ of a thermostat intermittently stops working, for periods the house would become warmer and warmer without limit. The hypothesis draws on recent investigations of the Central Homeostasis Network showing multiple interconnections between the autonomic system, central nervous system, and brain stem.
The hypothesis helps to explain the shared symptomatology of ME/CFS and PASC and the unpredictable, intermittent, and fluctuating pattern of symptoms of ME/CFS and PASC. The current theoretical approach remains speculative and requires in-depth investigation before any definite conclusions can be drawn.
Source: Marks DF. Converging Evidence of Similar Symptomatology of ME/CFS and PASC Indicating Multisystemic Dyshomeostasis. Biomedicines. 2023; 11(1):180. https://doi.org/10.3390/biomedicines11010180 https://www.mdpi.com/2227-9059/11/1/180 (Full text)

Plasma metabolomics reveals disrupted response and recovery following maximal exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Post-exertional malaise (PEM) is a hallmark symptom of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We monitored the evolution of 1,157 plasma metabolites in 60 ME/CFS cases (45 females, 15 males) and in 45 matched healthy control subjects (30 females, 15 males) before and after two maximal Cardiopulmonary Exercise Test (CPET) challenges separated by 24 hours, with the intent of provoking PEM in patients. Four timepoints allowed exploration of the metabolic response to maximal energy-producing capacity and the recovery pattern of ME/CFS cases compared to the healthy control group.

Baseline comparison identified several significantly different metabolites, along with an enriched percentage of yet-to-be identified compounds. Additionally, temporal measures demonstrated an increased metabolic disparity between cohorts, including unknown metabolites. The effects of exertion in the ME/CFS cohort predominantly highlighted lipid- as well as energy-related pathways and chemical structure clusters, which were disparately affected by the first and second exercise sessions.

The 24-hour recovery period was distinct in the ME/CFS cohort, with over a quarter of the identified pathways statistically different. The pathways that are uniquely different 24 hours after an exercise challenge provide clues to metabolic disruptions that lead to PEM. Numerous altered pathways were observed to depend on glutamate metabolism, a crucial component to the homeostasis of many organs in the body, including the brain.

Source: Germain A, Giloteaux L, Moore GE, Levine SM, Chia JK, Keller BA, Stevens J, Franconi CJ, Mao X, Shungu DC, Grimson A, Hanson MR. Plasma metabolomics reveals disrupted response and recovery following maximal exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. JCI Insight. 2022 Mar 31:e157621. doi: 10.1172/jci.insight.157621. Epub ahead of print. PMID: 35358096. https://pubmed.ncbi.nlm.nih.gov/35358096/