ACE-2-like enzymatic activity is associated with immunoglobulin in COVID-19 patients

Abstract:

Many mechanisms responsible for COVID-19 pathogenesis are well-established, but COVID-19 includes features with unclear pathogenesis, such as autonomic dysregulation, coagulopathies, and high levels of inflammation. The receptor for the SARS-CoV-2 spike protein receptor-binding domain (RBD) is angiotensin-converting enzyme 2 (ACE2). We hypothesized that some COVID-19 patients may develop antibodies that have a negative molecular image of RBD sufficiently similar to ACE2 to yield ACE2-like catalytic activity-ACE2-like abzymes.

To explore this hypothesis, we studied patients hospitalized with COVID-19 who had plasma samples available obtained about 7 days after admission. ACE2 is a metalloprotease that requires Zn2+ for activity. However, we found that the plasma from some patients studied could specifically cleave a synthetic ACE2 peptide substrate, even though the plasma samples were collected using disodium EDTA anticoagulant. When we spiked plasma with synthetic ACE2, no ACE2 substrate cleavage activity was observed unless Zn2+ was added or the plasma was diluted to decrease EDTA concentration.

After processing samples by 100 kDa size exclusion columns and protein A/G adsorption, which depleted immunoglobulin by >99.99%, the plasma samples did not cleave the ACE2 substrate peptide. The data suggest that some patients with COVID-19 develop antibodies with abzyme-like activity capable of cleaving synthetic ACE2 substrate. Since abzymes can exhibit promiscuous substrate specificities compared to the enzyme whose active site image they resemble, and since proteolytic cascades regulate many physiologic processes, anti-RBD abzymes may contribute to some otherwise obscure COVID-19 pathogenesis.

Importance: We provide what we believe to be the first description of angiotensin-converting enzyme 2 (ACE2)-like enzymatic activity associated with immunoglobulin in COVID-19 patients. COVID-19 includes many puzzling clinical features that have unclear pathogenesis, including a hyperinflammatory state, abnormalities of the clotting cascade, and blood pressure instability.

We hypothesized that some patients with COVID-19 patients may produce antibodies against SARS-CoV-2 with enzymatic activity, or abzymes, that target important proteolytic regulatory cascades. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein binds ACE2 on the surface of the future host cell. This means that the RBD has a negative molecular image of ACE2.

We hypothesized that some antibodies produced against the RBD would have, in turn, a negative molecular image of the RBD sufficiently similar to ACE2 to have ACE2-like catalytic activity. In other words, some anti-RBD antibodies would be ACE2-like abzymes. Abzymes elicited by SARS-CoV-2 infection have the potential to affect host physiology.

Source: Song Y, Myers R, Mehl F, Murphy L, Brooks B, Wilson JM, Kadl A, Woodfolk J, Zeichner SL. ACE-2-like enzymatic activity is associated with immunoglobulin in COVID-19 patients. mBio. 2024 Mar 19:e0054124. doi: 10.1128/mbio.00541-24. Epub ahead of print. PMID: 38501835. https://journals.asm.org/doi/10.1128/mbio.00541-24 (Full text)

Genetic evaluation of AMPD1, CPT2, and PGYM metabolic enzymes in patients with chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is a disease that can seriously impair one’s quality of life; patients complain of excessive fatigue and myalgia following physical exertion. This disease may be associated with abnormalities in genes affecting exercise tolerance and physical performance. Adenosine monophosphate deaminase (AMPD1), carnitine palmitoyltransferase II (CPT2), and the muscle isoform of glycogen phosphorylase (PYGM) genes provide instructions for producing enzymes that play major roles in energy production during work.

The aim of this study was to look for evidence of genotype-associated excessive muscle fatigue. Three metabolic genes (AMPD1, CPT2, and PYGM) were therefore fully sequenced in 17 Italian patients with CFS. We examined polymorphisms known to alter the function of these metabolic genes, and compared their genotypic distributions in CFS patients and 50 healthy controls using chi-square tests and odds ratios. One-way analysis of variance with F-ratio was carried out to determine the associations between genotypes and disease severity using CF scores.

No major genetic variations between patients and controls were found in the three genes studied, and we did not find any association between these genes and CFS. In conclusion, variations in AMPD1, CPT2, and PGYM genes are not associated with the onset, susceptibility, or severity of CFS.

 

Source: Maltese PE, Venturini L, Poplavskaya E, Bertelli M, Cecchin S, Granato M, Nikulina SY, Salmina A, Aksyutina N, Capelli E, Ricevuti G, Lorusso L. Genetic evaluation of AMPD1, CPT2, and PGYM metabolic enzymes in patients with chronic fatigue syndrome. Genet Mol Res. 2016 Jul 29;15(3). doi: 10.4238/gmr.15038717. https://www.ncbi.nlm.nih.gov/pubmed/27525900

 

Serum angiotensin-converting enzyme as a marker for the chronic fatigue-immune dysfunction syndrome: a comparison to serum angiotensin-converting enzyme in sarcoidosis

Abstract:

PURPOSE: To study the reliability of a serum angiotensin-converting enzyme (ACE) assay as a marker for the chronic fatigue-immune dysfunction syndrome (CFIDS), and to compare some enzyme characteristics of ACE in CFIDS with that in sarcoidosis.

PATIENTS AND METHODS: Forty-nine patients with CFIDS and 56 endemic control subjects from Lyndonville, New York, and Charlotte, North Carolina; plus 23 untreated patients with active sarcoidosis, 24 with sarcoidosis receiving corticosteroid therapy, and 32 patient controls without sarcoidosis from California. Serum ACE levels were determined with a spectrophotometric method. The effect of freezing and thawing and the effect of storage at 4 degrees C were compared between CFIDS and sarcoidosis samples.

RESULTS: Serum ACE levels were elevated in 80% of patients with CFIDS and 30% of endemic control subjects as compared with 9.4% of nonendemic California control subjects. The ACE activity in CFIDS differed from that in sarcoidosis because of its lability with storage at 4 degrees C in CFIDS and its partial activation with freezing and thawing. Thus, ACE activity was elevated in the majority of CFIDS patients either upon initial assay or upon a subsequent assay after refreezing. ACE activity was elevated in 87% of patients with active sarcoidosis and was not affected by storage or freezing and thawing.

CONCLUSIONS: Serum ACE elevations may be a useful marker for CFIDS, especially if a method can be developed to distinguish ACE in CFIDS from that in sarcoidosis. The sensitivity for CFIDS was 80%, with 68% specificity in an endemic area. The increased prevalence of serum ACE elevations in endemic controls as compared with nonendemic controls suggests that an ACE increase may be an early manifestation of CFIDS and supports the concept that CFIDS is a definite disease state.

 

Source: Lieberman J, Bell DS. Serum angiotensin-converting enzyme as a marker for the chronic fatigue-immune dysfunction syndrome: a comparison to serum angiotensin-converting enzyme in sarcoidosis. Am J Med. 1993 Oct;95(4):407-12. http://www.ncbi.nlm.nih.gov/pubmed/8213873