From IBS to ME – The dysbiotic march hypothesis

Abstract:

Irritable bowel syndrome (IBS) is often associated with other unexplained complaints like chronic fatigue syndrome (CFS), fibromyalgia and myalgic encephalopathy (ME). The pathogenesis of the relationship is unknown. Intestinal dysbiosis may be a common abnormality, but based on 1100 consecutive IBS patients examined over a nine years period, we hypothesize that the development of the disease, often from IBS to ME, actually manifests a “dysbiotic march”. In analogy with “the atopic march” in allergic diseases, we suggest “a dysbiotic march” in IBS; initiated by extensive use of antibiotics during childhood, often before school age. Various abdominal complaints including IBS may develop soon thereafter, while systemic symptom like CFS, fibromyalgia and ME may appear years later.

Source: Berstad A, Hauso O, Berstad K, Berstad JER. From IBS to ME – The dysbiotic march hypothesis. Med Hypotheses. 2020 Feb 26;140:109648. doi: 10.1016/j.mehy.2020.109648. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/32126475

A systematic review of enteric dysbiosis in chronic fatigue syndrome/myalgic encephalomyelitis

Abstract:

BACKGROUND: Chronic fatigue syndrome or myalgic encephalomyelitis (CFS/ME) is an illness characterised by profound and pervasive fatigue in addition to a heterogeneous constellation of symptoms. The aetiology of this condition remains unknown; however, it has been previously suggested that enteric dysbiosis is implicated in the pathogenesis of CFS/ME. This review examines the evidence currently available for the presence of abnormal microbial ecology in CFS/ME in comparison to healthy controls, with one exception being probiotic-supplemented CFS/ME patients, and whether the composition of the microbiome plays a role in symptom causation.

METHODS: EMBASE, Medline (via EBSCOhost), Pubmed and Scopus were systematically searched from 1994 to March 2018. All studies that investigated the gut microbiome composition of CFS/ME patients were initially included prior to the application of specific exclusion criteria. The association between these findings and patient-centred outcomes (fatigue, quality of life, gastrointestinal symptoms, psychological wellbeing) are also reported.

RESULTS: Seven studies that met the inclusion criteria were included in the review. The microbiome composition of CFS/ME patients was compared with healthy controls, with the exception of one study that compared to probiotic-supplemented CFS/ME patients. Differences were reported in each study; however, only three were considered statistically significant, and the findings across all studies were inconsistent. The quality of the studies included in this review scored between poor (< 54%), fair (54-72%) and good (94-100%) using the Downs and Black checklist.

CONCLUSIONS: There is currently insufficient evidence for enteric dysbiosis playing a significant role in the pathomechanism of CFS/ME. Recommendations for future research in this field include the use of consistent criteria for the diagnosis of CFS/ME, reduction of confounding variables by controlling factors that influence microbiome composition prior to sample collection and including more severe cases of CFS/ME.

Source: Du Preez S, Corbitt M, Cabanas H, Eaton N, Staines D, Marshall-Gradisnik S. A systematic review of enteric dysbiosis in chronic fatigue syndrome/myalgic encephalomyelitis. Syst Rev. 2018 Dec 20;7(1):241. doi: 10.1186/s13643-018-0909-0. https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-018-0909-0 (Full article)

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in the Era of the Human Microbiome: Persistent Pathogens Drive Chronic Symptoms by Interfering With Host Metabolism, Gene Expression, and Immunity

Abstract:

The illness ME/CFS has been repeatedly tied to infectious agents such as Epstein Barr Virus. Expanding research on the human microbiome now allows ME/CFS-associated pathogens to be studied as interacting members of human microbiome communities. Humans harbor these vast ecosystems of bacteria, viruses and fungi in nearly all tissue and blood. Most well-studied inflammatory conditions are tied to dysbiosis or imbalance of the human microbiome. While gut microbiome dysbiosis has been identified in ME/CFS, microbes and viruses outside the gut can also contribute to the illness.

Pathobionts, and their associated proteins/metabolites, often control human metabolism and gene expression in a manner that pushes the body toward a state of illness. Intracellular pathogens, including many associated with ME/CFS, drive microbiome dysbiosis by directly interfering with human transcription, translation, and DNA repair processes. Molecular mimicry between host and pathogen proteins/metabolites further complicates this interference. Other human pathogens disable mitochondria or dysregulate host nervous system signaling. Antibodies and/or clonal T cells identified in patients with ME/CFS are likely activated in response to these persistent microbiome pathogens.

Different human pathogens have evolved similar survival mechanisms to disable the host immune response and host metabolic pathways. The metabolic dysfunction driven by these organisms can result in similar clusters of inflammatory symptoms. ME/CFS may be driven by this pathogen-induced dysfunction, with the nature of dysbiosis and symptom presentation varying based on a patient’s unique infectious and environmental history. Under such conditions, patients would benefit from treatments that support the human immune system in an effort to reverse the infectious disease process.

Source: Proal A, Marshall T. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in the Era of the Human Microbiome: Persistent Pathogens Drive Chronic Symptoms by Interfering With Host Metabolism, Gene Expression, and Immunity. Front Pediatr. 2018 Dec 4;6:373. doi: 10.3389/fped.2018.00373. eCollection 2018. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288442/ (Full article)

Open-label pilot for treatment targeting gut dysbiosis in myalgic encephalomyelitis/chronic fatigue syndrome: neuropsychological symptoms and sex comparisons

Abstract:

BACKGROUND: Preliminary evidence suggests that the enteric microbiota may play a role in the expression of neurological symptoms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Overlapping symptoms with the acute presentation of D-lactic acidosis has prompted the use of antibiotic treatment to target the overgrowth of species within the Streptococcus genus found in commensal enteric microbiota as a possible treatment for neurological symptoms in ME/CFS.

METHODS: An open-label, repeated measures design was used to examine treatment efficacy and enable sex comparisons. Participants included 44 adult ME/CFS patients (27 females) from one specialist medical clinic with Streptococcus viable counts above 3.00 × 105 cfu/g (wet weight of faeces) and with a count greater than 5% of the total count of aerobic microorganisms. The 4-week treatment protocol included alternate weeks of Erythromycin (400 mg of erythromycin as ethyl succinate salt) twice daily and probiotic (D-lactate free multistrain probiotic, 5 × 1010 cfu twice daily). 2 × 2 repeated measures ANOVAs were used to assess sex-time interactions and effects across pre- and post-intervention for microbial, lactate and clinical outcomes. Ancillary non-parametric correlations were conducted to examine interactions between change in microbiota and clinical outcomes.

RESULTS: Large treatment effects were observed for the intention-to-treat sample with a reduction in Streptococcus viable count and improvement on several clinical outcomes including total symptoms, some sleep (less awakenings, greater efficiency and quality) and cognitive symptoms (attention, processing speed, cognitive flexibility, story memory and verbal fluency). Mood, fatigue and urine D:L lactate ratio remained similar across time. Ancillary results infer that shifts in microbiota were associated with more of the variance in clinical changes for males compared with females.

CONCLUSIONS: Results support the notion that specific microorganisms interact with some ME/CFS symptoms and offer promise for the therapeutic potential of targeting gut dysbiosis in this population. Streptococcus spp. are not the primary or sole producers of D-lactate. Further investigation of lactate concentrations are needed to elucidate any role of D-lactate in this population. Concurrent microbial shifts that may be associated with clinical improvement (i.e., increased Bacteroides and Bifidobacterium or decreased Clostridium in males) invite enquiry into alternative strategies for individualised treatment.

Trial Registration Australian and New Zealand Clinical Trial Registry (ACTRN12614001077651) 9th October 2014. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366933&isReview=true.

Source: Wallis A, Ball M, Butt H, Lewis DP, McKechnie S, Paull P, Jaa-Kwee A, Bruck D. Open-label pilot for treatment targeting gut dysbiosis in myalgic encephalomyelitis/chronic fatigue syndrome: neuropsychological symptoms and sex comparisons. J Transl Med. 2018 Feb 6;16(1):24. doi: 10.1186/s12967-018-1392-z. https://www.ncbi.nlm.nih.gov/pubmed/29409505

A Pair of Identical Twins Discordant for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Differ in Physiological Parameters and Gut Microbiome Composition

Abstract:

BACKGROUND: Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) present with profound fatigue, flu-like symptoms, pain, cognitive impairment, orthostatic intolerance, and post-exertional malaise (PEM), and exacerbation of some or all of the baseline symptoms.

CASE REPORT: We report on a pair of 34-year-old monozygotic twins discordant for ME/CFS, with WELL, the non-affected twin, and ILL, the affected twin. Both twins performed a two-day cardiopulmonary exercise test (CPET), pre- and post-exercise blood samples were drawn, and both provided stool samples for biochemical and molecular analysis. At peak exertion for both CPETs, ILL presented lower VO2peak and peak workload compared to WELL.

WELL demonstrated normal reproducibility of VO2@ventilatory/anaerobic threshold (VAT) during  CPET2, whereas ILL experienced an abnormal reduction of 13% in VAT during  CPET2. A normal rise in lactate dehydrogenase (LDH), creatine kinase (CK), adrenocorticotropic hormone (ACTH), cortisol, creatinine, and ferritin content was observed following exercise for both WELL and ILL at each CPET.

ILL showed higher increases of resistin, soluble CD40 ligand (sCD40L), and soluble Fas ligand (sFasL) after exercise compared to WELL. The gut bacterial microbiome and virome were examined and revealed a lower microbial diversity in ILL compared to WELL, with fewer beneficial bacteria such as Faecalibacterium and Bifidobacterium, and an expansion of bacteriophages belonging to the tailed dsDNA Caudovirales order.

CONCLUSIONS: Results suggest dysfunctional immune activation in ILL following exercise and that prokaryotic viruses may contribute to mucosal inflammation and bacterial dysbiosis. Therefore, a two-day CPET and molecular analysis of blood and microbiomes could provide valuable information about ME/CFS, particularly if applied to a larger cohort of monozygotic twins.

 

Source: Giloteaux L, Hanson MR, Keller BA. A Pair of Identical Twins Discordant for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Differ in Physiological Parameters and Gut Microbiome Composition. Am J Case Rep. 2016 Oct 10;17:720-729. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058431/ (Full article)

 

Changes in Gut and Plasma Microbiome following Exercise Challenge in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease characterized by intense and debilitating fatigue not due to physical activity that has persisted for at least 6 months, post-exertional malaise, unrefreshing sleep, and accompanied by a number of secondary symptoms, including sore throat, memory and concentration impairment, headache, and muscle/joint pain.

In patients with post-exertional malaise, significant worsening of symptoms occurs following physical exertion and exercise challenge serves as a useful method for identifying biomarkers for exertion intolerance. Evidence suggests that intestinal dysbiosis and systemic responses to gut microorganisms may play a role in the symptomology of ME/CFS. As such, we hypothesized that post-exertion worsening of ME/CFS symptoms could be due to increased bacterial translocation from the intestine into the systemic circulation.

To test this hypothesis, we collected symptom reports and blood and stool samples from ten clinically characterized ME/CFS patients and ten matched healthy controls before and 15 minutes, 48 hours, and 72 hours after a maximal exercise challenge. Microbiomes of blood and stool samples were examined.

Stool sample microbiomes differed between ME/CFS patients and healthy controls in the abundance of several major bacterial phyla. Following maximal exercise challenge, there was an increase in relative abundance of 6 of the 9 major bacterial phyla/genera in ME/CFS patients from baseline to 72 hours post-exercise compared to only 2 of the 9 phyla/genera in controls (p = 0.005). There was also a significant difference in clearance of specific bacterial phyla from blood following exercise with high levels of bacterial sequences maintained at 72 hours post-exercise in ME/CFS patients versus clearance in the controls.

These results provide evidence for a systemic effect of an altered gut microbiome in ME/CFS patients compared to controls. Upon exercise challenge, there were significant changes in the abundance of major bacterial phyla in the gut in ME/CFS patients not observed in healthy controls. In addition, compared to controls clearance of bacteria from the blood was delayed in ME/CFS patients following exercise. These findings suggest a role for an altered gut microbiome and increased bacterial translocation following exercise in ME/CFS patients that may account for the profound post-exertional malaise experienced by ME/CFS patients.

 

Source: Shukla SK, Cook D, Meyer J, Vernon SD, Le T, Clevidence D, Robertson CE, Schrodi SJ, Yale S, Frank DN. Changes in Gut and Plasma Microbiome following Exercise Challenge in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). PLoS One. 2015 Dec 18;10(12):e0145453. doi: 10.1371/journal.pone.0145453. ECollection 2015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684203/ (Full article)

 

High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients

Abstract:

Human intestinal microbiota plays an important role in the maintenance of host health by providing energy, nutrients, and immunological protection. Intestinal dysfunction is a frequent complaint in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients, and previous reports suggest that dysbiosis, i.e. the overgrowth of abnormal populations of bacteria in the gut, is linked to the pathogenesis of the disease.

We used high-throughput 16S rRNA gene sequencing to investigate the presence of specific alterations in the gut microbiota of ME/CFS patients from Belgium and Norway. 43 ME/CFS patients and 36 healthy controls were included in the study. Bacterial DNA was extracted from stool samples, PCR amplification was performed on 16S rRNA gene regions, and PCR amplicons were sequenced using Roche FLX 454 sequencer.

The composition of the gut microbiota was found to differ between Belgian controls and Norwegian controls: Norwegians showed higher percentages of specific Firmicutes populations (Roseburia, Holdemania) and lower proportions of most Bacteroidetes genera. A highly significant separation could be achieved between Norwegian controls and Norwegian patients: patients presented increased proportions of Lactonifactor and Alistipes, as well as a decrease in several Firmicutes populations.

In Belgian subjects the patient/control separation was less pronounced, however some abnormalities observed in Norwegian patients were also found in Belgian patients. These results show that intestinal microbiota is altered in ME/CFS. High-throughput sequencing is a useful tool to diagnose dysbiosis in patients and could help designing treatments based on gut microbiota modulation (antibiotics, pre and probiotics supplementation).

Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

 

Source: Frémont M, Coomans D, Massart S, De Meirleir K. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients. Anaerobe. 2013 Aug;22:50-6. doi: 10.1016/j.anaerobe.2013.06.002. Epub 2013 Jun 19. https://www.ncbi.nlm.nih.gov/pubmed/23791918