Association between chronic fatigue syndrome and the corticosteroid-binding globulin gene ALA SER224 polymorphism

Abstract:

Chronic fatigue syndrome (CFS) is characterized by idiopathic fatigue of greater than 6 months’ duration with postexertional exacerbation and many other symptoms. A trend toward relative hypocortisolism is described in CFS. Twin and family studies indicate a substantial genetic etiologic component to CFS. Recently, severe corticosteroid-binding globulin (CBG) gene mutations have been associated with CFS in isolated kindreds. Human leukocyte elastase, an enzyme important in CBG catabolism at inflammatory sites, is reported to be elevated in CFS. We hypothesized that CBG gene polymorphisms may act as a genetic risk factor for CFS.

A total of 248 patients with CFS defined by Centers for Disease Control criteria, and 248 controls were recruited. Sequencing and restriction enzyme testing of the CBG gene coding region allowed detection of severe CBG gene mutations and a common exon 3 polymorphism (c.825G–>T, Ala-Ser224).

Plasma CBG levels were measured in 125 CFS patients and 198 controls by radioimmunoassay. Total and free (calculated and measured) cortisol levels were ascertained in single samples between 8-10 a.m. The age of onset (mid 30s) and gender ratio (2.2:1, female:male) of the patients were similar to those reported in U.S. epidemiologic studies.

A trend toward a preponderance of serine224 homozygosity among the CFS patients was noted, compared with controls (chi2 = 5.31, P = 0.07). Immunoreactive-CBG (IR-CBG) levels were higher in Serine/Alanine (Ser/Ala) than Ala/Ala subjects and higher again in Ser/Ser subjects, this effect was strongest in controls; Ser/Ser: 46.1+/-1.8 (n = 31, P = 0.03) vs. Ser/Ala: 42.4+/-1.0 (n = 56, P = 0.05) vs. Ala/Ala: 40.8+/-1.7 microg/mL (n = 21). Despite higher CBG levels, there was a nonsignificant trend toward lower total and free plasma cortisol in serine allele positive patients, total cortisol: Ser/Ser: 13.3+/-1.4 (n = 34) vs. Ser/Ala: 14.0+/-0.7 (n = 66) vs. Ala/Ala: 15.4+/-1.0 (n = 23).

Homozygosity for the serine allele of the CBG gene may predispose to CFS, perhaps due to an effect on hypothalamic-pituitary-adrenal axis function related to altered CBG-cortisol transport function or immune-cortisol interactions.

 

Source: Torpy DJ, Bachmann AW, Gartside M, Grice JE, Harris JM, Clifton P, Easteal S, Jackson RV, Whitworth JA. Association between chronic fatigue syndrome and the corticosteroid-binding globulin gene ALA SER224 polymorphism. Endocr Res. 2004 Aug;30(3):417-29. http://www.ncbi.nlm.nih.gov/pubmed/15554358

 

Familial corticosteroid-binding globulin deficiency due to a novel null mutation: association with fatigue and relative hypotension

Abstract:

Corticosteroid-binding globulin is a 383-amino acid glycoprotein that serves a hormone transport role and may have functions related to the stress response and inflammation. We describe a 39-member Italian-Australian family with a novel complete loss of function (null) mutation of the corticosteroid-binding globulin gene. A second, previously described, mutation (Lyon) segregated independently in the same kindred. The novel exon 2 mutation led to a premature termination codon corresponding to residue -12 of the procorticosteroid-binding globulin molecule (c.121G–>A).

Among 32 family members there were 3 null homozygotes, 19 null heterozygotes, 2 compound heterozygotes, 3 Lyon heterozygotes, and 5 individuals without corticosteroid-binding globulin mutations. Plasma immunoreactive corticosteroid-binding globulin was undetectable in null homozygotes, and mean corticosteroid-binding globulin levels were reduced by approximately 50% at 18.7 +/- 1.3 microg/ml (reference range, 30-52 microg/ml) in null heterozygotes. Morning total plasma cortisol levels were less than 1.8 microg/dl in homozygotes and were positively correlated to the plasma corticosteroid-binding globulin level in heterozygotes. Homozygotes and heterozygote null mutation subjects had a high prevalence of hypotension and fatigue.

Among 19 adults with the null mutation, the systolic blood pressure z-score was 12.1 +/- 3.5; 11 of 19 subjects (54%) had a systolic blood pressure below the third percentile. The mean diastolic blood pressure z-score was 18.1 +/- 3.4; 8 of 19 subjects (42%) had a diastolic blood pressure z-score below 10.

Idiopathic chronic fatigue was present in 12 of 14 adult null heterozygote subjects (86%) and in 2 of 3 null homozygotes. Five cases met the Centers for Disease Control criteria for chronic fatigue syndrome. Fatigue questionnaires revealed scores of 25.1 +/- 2.5 in 18 adults with the mutation vs. 4.2 +/- 1.5 in 23 healthy controls (P < 0.0001).

Compound heterozygosity for both mutations resulted in plasma cortisol levels comparable to those in null homozygotes. Abnormal corticosteroid-binding globulin concentrations or binding affinity may lead to the misdiagnosis of isolated ACTH deficiency. The mechanism of the association between fatigue and relative hypotension is not established by these studies. As idiopathic fatigue disorders are associated with relatively low plasma cortisol, abnormalities of corticosteroid-binding globulin may be pathogenic.

 

Source: Torpy DJ, Bachmann AW, Grice JE, Fitzgerald SP, Phillips PJ, Whitworth JA, Jackson RV. Familial corticosteroid-binding globulin deficiency due to a novel null mutation: association with fatigue and relative hypotension. J Clin Endocrinol Metab. 2001 Aug;86(8):3692-700. http://www.ncbi.nlm.nih.gov/pubmed/11502797