The role of serum brain injury biomarkers in individuals with a mild-to-moderate COVID infection and Long-COVID – results from the prospective population-based COVI-GAPP study

Abstract:

Background During and after mild (no hospitalization) or moderate (hospitalization without ICU) SARS-CoV-2 infections, a wide range of symptoms, including neurological disorders have been reported. It is, however, unknown if these neurological symptoms are associated with brain injury and whether brain injury and related symptoms also emerge in patients suffering from Long-COVID. Neuronal biomarkers such as serum neurofilament light chain and glial fibrillary acidic protein can be used to elucidate neuro-axonal and astroglial injuries. We therefore investigated whether these biomarkers are associated with the COVID-19 infection status (mild-to-moderate), the associated symptoms and Long-COVID.

Methods From 146 individuals of the general population with a post-acute, mild-to-moderate SARS-CoV-2 infection, serum neurofilament light chain (sNfL; marker of intra-axonal neuronal injury) and serum glial fibrillary acidic protein (sGFAP; marker of astrocytic activation/injury) were measured. Samples were taken before, during and after (five and ten months) a SARS-CoV-2 infection. Individual symptoms and Long-COVID status were assessed using questionnaires.

Results Neurological symptoms were described for individuals after a mild and moderate COVID-19 infection, however, serum markers of brain injury (sNfL/sGFAP) did not change after an infection (sNfL: P = 0.74; sGFAP: P = 0.24) and were not associated with headache (P = 0.51), fatigue (P = 0.93), anosmia (P = 0.77) and ageusia (P = 0.47). In participants with Long-COVID, sGFAP (P = 0.038), but not sNfL (P = 0.58) significantly increased but was not associated with neurological symptoms.

Conclusion Neurological symptoms in individuals after a mild-to-moderate SARS-CoV-2 infection with and without Long-COVID were not associated with brain injury, although there was some astroglial injury observed in Long-COVID patients.

Source: Julia TelserKirsten GrossmannOrnella C WeideliDorothea HillmannStefanie AeschbacherNiklas WohlwendLaura VelezJens KuhleAleksandra MaleskaPascal BenkertCorina RischDavid ConenMartin RischLorenz Risch. The role of serum brain injury biomarkers in individuals with a mild-to-moderate COVID infection and Long-COVID – results from the prospective population-based COVI-GAPP study.

Inflammation From Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation?

Abstract:

As inflammation in the brain contributes to several neurological and psychiatric diseases, the cause of neuroinflammation is being widely studied. The causes of neuroinflammation can be roughly divided into the following domains: viral infection, autoimmune disease, inflammation from peripheral organs, mental stress, metabolic disorders, and lifestyle. In particular, the effects of neuroinflammation caused by inflammation of peripheral organs have yet unclear mechanisms.

Many diseases, such as gastrointestinal inflammation, chronic obstructive pulmonary disease, rheumatoid arthritis, dermatitis, chronic fatigue syndrome, or myalgic encephalomyelitis (CFS/ME), trigger neuroinflammation through several pathways. The mechanisms of action for peripheral inflammation-induced neuroinflammation include disruption of the blood-brain barrier, activation of glial cells associated with systemic immune activation, and effects on autonomic nerves via the organ-brain axis. In this review, we consider previous studies on the relationship between systemic inflammation and neuroinflammation, focusing on the brain regions susceptible to inflammation.

Source: Sun Y, Koyama Y, Shimada S. Inflammation From Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation? Front Aging Neurosci. 2022 Jun 16;14:903455. doi: 10.3389/fnagi.2022.903455. PMID: 35783147; PMCID: PMC9244793. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244793/ (Full text)

Broken Connections: The Evidence for Neuroglial Failure in ME/CFS

Abstract:

In spite of decades of research, the pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is still poorly understood. Several pathomechanisms have been identified, yet, it remains unclear how they are related and which of them may be upstream or downstream.

In this paper, we present a theoretical strategy that may help clarify the causal chain of pathophysiological events in ME/CFS. We propose to focus on the common final histological pathway of ME/CFS and suggest to ask: Which cellular compartment may explain the pathological processes and clinical manifestations observed in ME/CFS? Any functional unit consistently identified through this search may then be a plausible candidate for further exploration.

For this “histological” approach we have compiled a list of 22 undisputed clinical and pathophysiological features of ME/CFS that need to be plausibly and most directly explained by the dysfunctional cellular unit in question. For each feature we have searched the literature for pathophysiological explanations and analyzed if they may point to the same functional cellular unit. Through this search we have identified the CNS neuroglia – microglia and astroglia – as the one functional unit in the human body which may best explain all and any of the clinical and pathological features, dysfunctions and observations described for ME/CFS.

While this points to neuroinflammation as the central hub in ME/CFS, it also points to a novel understanding of the neuroimmune basis of ME/CFS. After all, the neuroglial cells are now understood as the functional matrix of the human brain connectome which operates beyond and above specific brain centers, receptor units or neurotransmitter systems and integrates innate immune functions with CNS regulatory functions pertaining to autonomous regulation, cellular metabolism and the stress response.

Source: Renz-Polster, H. (2021, August 3). Broken Connections: The Evidence for Neuroglial Failure in ME/CFS. https://doi.org/10.31219/osf.io/ef3n4 https://osf.io/ef3n4/ (Full text)