Dorsal root ganglia: fibromyalgia pain factory?

Abstract:

This perspective article focuses on dorsal root ganglia (DRG) as potential fibromyalgia main pain source. Humans possess 31 pairs of DRG lying along the spine. These ganglia have unique anatomical and physiological features. During development, DRG are extruded from the central nervous system and from the blood-brain barrier but remain surrounded by meningeal layers and by cerebrospinal fluid. DRG house the pain-transmitting small nerve fiber nuclei; each individual nucleus is tightly enveloped by metabolically active glial cells. DRG possess multiple inflammatory/pro-nociceptive molecules including ion channels, neuropeptides, lymphocytes, and macrophages. DRG neurons have pseudo-unipolar structure making them able to generate pain signals; additionally, they can sequester antigen-specific antibodies thus inducing immune-mediated hyperalgesia. In rodents, diverse physical and/or environmental stressors induce DRG phenotypic changes and hyperalgesia.

Unfolding clinical evidence links DRG pathology to fibromyalgia and similar syndromes. Severe fibromyalgia is associated to particular DRG ion channel genotype. Myalgic encephalomyelitis patients with comorbid fibromyalgia have exercise-induced DRG pro-nociceptive molecules gene overexpression. Skin biopsy demonstrates small nerve fiber pathology in approximately half of fibromyalgia patients. A confocal microscopy study of fibromyalgia patients disclosed strong correlation between corneal denervation and small fiber neuropathy symptom burden. DRG may be fibromyalgia neural hub where different stressors can be transformed in neuropathic pain. Novel neuroimaging technology and postmortem inquest may better define DRG involvement in fibromyalgia and similar maladies. DRG pro-nociceptive molecules are attractive fibromyalgia therapeutic targets.

Source: Martínez-Lavín M. Dorsal root ganglia: fibromyalgia pain factory? Clin Rheumatol. 2021 Jan 6:1–5. doi: 10.1007/s10067-020-05528-z. Epub ahead of print. PMID: 33409721; PMCID: PMC7787228.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787228/ (Full text)

Sexual dimorphism in a neuronal mechanism of spinal hyperexcitability across rodent and human models of pathological pain

Abstract:

The prevalence and severity of many chronic pain syndromes differ across sex, and recent studies have identified differences in immune signalling within spinal nociceptive circuits as a potential mediator. Although it has been proposed that sex-specific pain mechanisms converge once they reach neurons within the superficial dorsal horn, direct investigations using rodent and human preclinical pain models have been lacking.

Here, we discovered that in the Freund’s adjuvant in vivo model of inflammatory pain, where both male and female rats display tactile allodynia, a pathological coupling between KCC2-dependent disinhibition and N-methyl-D-aspartate receptor (NMDAR) potentiation within superficial dorsal horn neurons was observed in male but not female rats. Unlike males, the neuroimmune mediator brain-derived neurotrophic factor (BDNF) failed to downregulate inhibitory signalling elements (KCC2 and STEP61) and upregulate excitatory elements (pFyn, GluN2B and pGluN2B) in female rats, resulting in no effect of ex vivo brain-derived neurotrophic factor on synaptic NMDAR responses in female lamina I neurons. Importantly, this sex difference in spinal pain processing was conserved from rodents to humans.

As in rodents, ex vivo spinal treatment with BDNF downregulated markers of disinhibition and upregulated markers of facilitated excitation in superficial dorsal horn neurons from male but not female human organ donors. Ovariectomy in female rats recapitulated the male pathological pain neuronal phenotype, with BDNF driving a coupling between disinhibition and NMDAR potentiation in adult lamina I neurons following the prepubescent elimination of sex hormones in females. This discovery of sexual dimorphism in a central neuronal mechanism of chronic pain across species provides a foundational step towards a better understanding and treatment for pain in both sexes.

Source: Dedek A, Xu J, Lorenzo LÉ, Godin AG, Kandegedara CM, Glavina G, Landrigan JA, Lombroso PJ, De Koninck Y, Tsai EC, Hildebrand ME. Sexual dimorphism in a neuronal mechanism of spinal hyperexcitability across rodent and human models of pathological pain. Brain. 2022 Apr 29;145(3):1124-1138. doi: 10.1093/brain/awab408. PMID: 35323848; PMCID: PMC9050559. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050559/ (Full text)

Impaired Cardiac Autonomic Control in Women With Fibromyalgia Is Independent of Their Physical Fitness

Abstract:

Background/objective: Evidence has suggested abnormal cardiac autonomic responses to exercise in patients with fibromyalgia (FM). However, it is not clear whether the dysautonomia represents a reduced physical fitness rather directly related to FM pathogenesis. Thus, we aimed to verify the cardiac autonomic responses before, during, and after a maximal incremental exercise in women with FM and whether these hypothesized alterations would be dependent with their physical fitness.

Methods: This is a cross-sectional study with 23 FM women and 17 healthy women. The participants performed a maximal incremental cycling test to determine their maximal workload (Wmax) and were further matched by their Wmax (14 FM patients, Wmax: 128.6 ± 16.2 W; and 14 healthy women, Wmax: 131.9 ± 15.9 W). Beat-to-beat heart rate (HR) was continuously monitored to calculate HR variability indexes at rest, chronotropic reserve during exercise, and HR recovery.

Results: Heart rate variability indexes related to vagal modulation were significantly lower in FM patients than in healthy women (p < 0.05). The chronotropic reserve and the HR recovery at 30, 120, 180, 300, and 600 seconds after exercise were all lower in FM patients compared with those of healthy women (p < 0.05). Similar findings were found when analysis was performed using the matched physical fitness subgroup.

Conclusions: The documented cardiac autonomic abnormalities at rest, during, and after exercise in FM patients persist even when physical fitness status is taken in account. Thus, strategies to attenuate the dysautonomia in FM patients must be considered.

Source: Schamne JC, Ressetti JC, Lima-Silva AE, Okuno NM. Impaired Cardiac Autonomic Control in Women With Fibromyalgia Is Independent of Their Physical Fitness. J Clin Rheumatol. 2021 Sep 1;27(6S):S278-S283. doi: 10.1097/RHU.0000000000001518. PMID: 32826659. https://pubmed.ncbi.nlm.nih.gov/32826659/

Prevalence of fibromyalgia 10 years after infection with Giardia lamblia: a controlled prospective cohort study

Abstract:

Objectives: To investigate whether acute infection with Giardia lamblia is associated with fibromyalgia 10 years after infection and whether fibromyalgia is associated with irritable bowel syndrome (IBS) and chronic fatigue (CF) in this setting.

Methods: A cohort study was established after an outbreak of G. lamblia in Bergen, Norway, 2004. Laboratory-confirmed cases and a matched control group were followed for 10 years. The main outcome was fibromyalgia 10 years after giardiasis, defined by the 2016 revisions of the fibromyalgia diagnostic criteria using the Fibromyalgia Survey Questionnaire (FSQ).

Results: The prevalence of fibromyalgia was 8.6% (49/572) among Giardia exposed compared to 3.1% (21/673) in controls (p<0.001). Unadjusted odds for having fibromyalgia was higher for Giardia exposed compared to controls (odds ratio (OR): 2.91, 95% confidence interval (CI): 1.72, 4.91), but adjusted for IBS and CF it was not (OR: 1.05, 95% CI: 0.57, 1.95). Among participants without CF the odds for fibromyalgia was 6.27 times higher for participants with IBS than those without (95% CI: 3.31, 11.91) regardless of exposure. Among participants without IBS the odds for fibromyalgia was 4.80 times higher for those with CF than those without (95% CI: 2.75, 8.37).

Conclusions: We found a higher prevalence of fibromyalgia among Giardia exposed compared to controls 10 years after the acute infection. Fibromyalgia was strongly associated with IBS and CF, and the difference between the exposed and controls can be attributed to the high prevalence of IBS and CF among the Giardia exposed. Notably, this study was not designed to establish causality between Giardia exposure and the outcomes.

Source: Hunskar GS, Rortveit G, Litleskare S, Eide GE, Hanevik K, Langeland N, Wensaas KA. Prevalence of fibromyalgia 10 years after infection with Giardia lamblia: a controlled prospective cohort study. Scand J Pain. 2021 Oct 21;22(2):348-355. doi: 10.1515/sjpain-2021-0122. PMID: 34679267. https://www.degruyter.com/document/doi/10.1515/sjpain-2021-0122/html (Full text)

Clinical overlap between fibromyalgia and myalgic encephalomyelitis. A systematic review and meta-analysis

Abstract:

Myalgic encephalomyelitis is an illness characterized by profound malaise after mental or physical effort occurring in patients already suffering from constant fatigue. On the other hand, widespread pain and widespread allodynia are the core fibromyalgia clinical features. There is controversy on these two syndromes alikeness. Through the years, different diagnostic and/or classification criteria have been put forward to appraise both fibromyalgia and myalgic encephalomyelitis. The epidemiology of these two illnesses, and their overlap, may vary accordingly to the used definition. The most recent Wolfe et al. 2016 fibromyalgia diagnostic criteria incorporates three myalgic encephalomyelitis features including fatigue, waking unrefreshed and dyscognition. The objective of this meta-analysis was to define the clinical overlap between fibromyalgia and myalgic encephalomyelitis based on a systematic literature review.

Methods: PubMed, Embase, Lilacs, and Cochrane data bases were searched on January 25, 2021 linking the medical subject heading “Fibromyalgia” to the following terms “chronic fatigue syndrome”, “myalgic encephalomyelitis” and “systemic exertion intolerance disease”. Our review included all original articles in which the clinical overlap between fibromyalgia and myalgic encephalomyelitis could be quantified based on recognized diagnostic or classification criteria. Articles scrutiny and selection followed the PRISMA guidelines. Each study quality was assessed according to GRADE recommendations. The global clinical overlap was calculated using a fixed effect model with inverse variance-weighted average method.

Results: Twenty one publications were included in the meta-analysis. Reviewed studies were highly dissimilar in their design, objectives, sample size, diagnostic criteria, and/or outcomes yielding a 98% heterogeneity index. Nevertheless, the clinical overlap between fibromyalgia and myalgic encephalomyelitis was a well defined outcome that could be reliably calculated despite the high heterogeneity value. All reviewed publications had moderate GRADE evidence level. Most evaluated articles used the old 1990 Wolfe et al. fibromyalgia diagnostic criteria. Myalgic encephalomyelitis and fibromyalgia diagnoses overlapped in 47.3% (95% CI: 45.97-48.63) of the reported cases.

Conclusion: This meta-analysis found prominent clinical overlap between fibromyalgia and myalgic encephalomyelitis. It seems likely that this concordance would be even higher when using the most recent Wolfe et al. 2016 fibromyalgia diagnostic criteria.

Source: Ramírez-Morales R, Bermúdez-Benítez E, Martínez-Martínez LA, Martínez-Lavín M. Clinical overlap between fibromyalgia and myalgic encephalomyelitis. A systematic review and meta-analysis. Autoimmun Rev. 2022 Jun 8:103129. doi: 10.1016/j.autrev.2022.103129. Epub ahead of print. PMID: 35690247. https://pubmed.ncbi.nlm.nih.gov/35690247/

Mechanistic factors contributing to pain and fatigue in fibromyalgia and ME/CFS: autonomic and inflammatory insights from an experimental medicine study

Abstract:

Background: Fibromyalgia and ME/CFS are multifaceted conditions with overlapping symptoms(1); the pathoaetiological mechanisms are complex and debated(2), however there is a strong association with features of hereditary disorders of connective tissue (hypermobility) and autonomic and inflammatory abnormalities (1,2).

Objectives: To determine potential autonomic and inflammatory mechanisms of pain and fatigue in fibromyalgia and ME/CFS

Methods: After excluding participants with WCC higher than 10 (suggesting acute infection) baseline markers of inflammation (CRP and ESR) were available for 60 patients with confirmed diagnoses of Fibromyalgia and/ or ME/CFS and 23 matched controls. Participants then underwent full research diagnostic evaluation including a hypermobility assessment(1) and autonomic challenge (60 degree head up tilt, ISRCTN78820481). Subjective pain and fatigue were assessed before and after challenge (VAS). Linear regression models were used to explore predictors, with adjustment for confounders as appropriate. Mediation analyses (looking for mechanistic effects) were conducted according to the method of Hayes (3) and mediation considered significant if bootstrapped confidence intervals of the estimated indirect effect did not cross zero. In these mediation analyses predictor variable was group membership (patient or control), outcome variable was change in 1)pain and 2)fatigue induced by challenge and mediatiors 1)no of connective tissue features in hypermobility diagnostic criteria endorsed by participant; 2)baseline inflammatory markers.

Results: ESR and CRP were significantly higher in patients rather than controls, even after correcting for BMI, age and sex (B=5.15, t=2.05, p=0.044; B=1.77, t=2.15, p=0.044 respectively). Adjusted ESR and CRP correlated with both subjective fatigue (B=0.44, t=2.09, p=0.04; B=1.63, t=2.60, p=0.011) and pain severity (B=0.13, t=2.51, p=0.014; B=0.45, t=3.01, p=0.004) at baseline. Autonomic challenge amplified pain (B=14.20, t=2.87, p=0.005) and fatigue (B=31.48, t=5.95, p=<0.001) in patients to a significantly greater degree than controls, controlling for baseline levels. Baseline ESR and CRP also predicted challenge-induced increase in fatigue (B=0.78, t=370, p=<0.001; B=1.91, t=3.36, p=<0.001) and ESR challenge-induced increases in pain (B=0.46, t=2.35, p=0.021).

Mediation analysis demonstrated that number of connective tissue features expressed in hypermobility criteria mediated the degree to which subjective pain was increased by the autonomic challenge (Bootstraped 95% CI of indirect effect do not cross zero, 0.1572 – 6.8171). ESR mediated the degree to which subjective fatigue was increased by the autonomic challenge (Bootstraped 95% CI of indirect effect do not cross zero,0.7541 – 7.3888).

Conclusion: To our knowledge this is the first study to directly explore autonomic and inflammatory mechanisms of pain and fatigue in a combined population of Fibromyalgia and ME/CFS. This study this adds to the evidence-base of baseline inflammatory abnormalities in fibromyalgia and ME/CFS. It highlights their potential role in predicting symptom severity and their potential mechanistic role in autonomic induced pain and fatigue, suggesting future treatment strategies.

Source: Eccles JThompson CThompson B, et al. AB1209 MECHANISTIC FACTORS CONTRIBUTING TO PAIN AND FATIGUE IN FIBROMYALGIA AND ME/CFS: AUTONOMIC AND INFLAMMATORY INSIGHTS FROM AN EXPERIMENTAL MEDICINE STUDY.

Carnitine Palmitoyl Transferase Deficiency in a University Immunology Practice

Abstract:

Purpose: This report describes the clinical manifestations of 35 patients sent to a University Immunology clinic with a diagnosis of fatigue and exercise intolerance who were identified to have low carnitine palmitoyl transferase activity on muscle biopsies.

Recent findings: All of the patients presented with fatigue and exercise intolerance and many had been diagnosed with fibromyalgia. Their symptoms responded to treatment of the metabolic disease. Associated symptoms included bloating, diarrhea, constipation, gastrointestinal reflux symptoms, recurrent infections, arthritis, dyspnea, dry eye, visual loss, and hearing loss. Associated medical conditions included Hashimoto thyroiditis, Sjogren’s syndrome, seronegative arthritis, food hypersensitivities, asthma, sleep apnea, and vasculitis. This study identifies clinical features that should alert physicians to the possibility of an underlying metabolic disease. Treatment of the metabolic disease leads to symptomatic improvement.

Source: Bax K, Isackson PJ, Moore M, Ambrus JL Jr. Carnitine Palmitoyl Transferase Deficiency in a University Immunology Practice. Curr Rheumatol Rep. 2020 Feb 14;22(3):8. doi: 10.1007/s11926-020-0879-9. PMID: 32067119. https://pubmed.ncbi.nlm.nih.gov/32067119/

Unbiased immune profiling reveals a natural killer cell-peripheral nerve axis in fibromyalgia

Abstract:

The pathophysiology of fibromyalgia syndrome (FMS) remains elusive, leading to a lack of objective diagnostic criteria and targeted treatment. We globally evaluated immune system changes in FMS by conducting multiparametric flow cytometry analyses of peripheral blood mononuclear cells and identified a natural killer (NK) cell decrease in patients with FMS. Circulating NK cells in FMS were exhausted yet activated, evidenced by lower surface expression of CD16, CD96, and CD226 and more CD107a and TIGIT. These NK cells were hyperresponsive, with increased CCL4 production and expression of CD107a when co-cultured with human leukocyte antigen null target cells. Genetic and transcriptomic pathway analyses identified significant enrichment of cell activation pathways in FMS driven by NK cells. Skin biopsies showed increased expression of NK activation ligand, unique long 16-binding protein, on subepidermal nerves of patients FMS and the presence of NK cells near peripheral nerves. Collectively, our results suggest that chronic activation and redistribution of circulating NK cells to the peripheral nerves contribute to the immunopathology associated with FMS.

Source: Verma V, Drury GL, Parisien M, Özdağ Acarli AN, Al-Aubodah TA, Nijnik A, Wen X, Tugarinov N, Verner M, Klares R 3rd, Linton A, Krock E, Morado Urbina CE, Winsvold B, Fritsche LG, Fors EA, Piccirillo C, Khoutorsky A, Svensson CI, Fitzcharles MA, Ingelmo PM, Bernard NF, Dupuy FP, Üçeyler N, Sommer C, King IL, Meloto CB, Diatchenko L; HUNT-All In Pain. Unbiased immune profiling reveals a natural killer cell-peripheral nerve axis in fibromyalgia. Pain. 2021 Sep 24:10.1097/j.pain.0000000000002498. doi: 10.1097/j.pain.0000000000002498. Epub ahead of print. PMID: 34913882; PMCID: PMC8942876. https://pubmed.ncbi.nlm.nih.gov/34913882/

Gastric herpes simplex virus type 1 infection is associated with functional gastrointestinal disorders in the presence and absence of comorbid fibromyalgia: a pilot case-control study

Abstract:

Purpose: Animal studies have linked gastric herpesvirus infections to symptoms associated with functional gastrointestinal disorders (FGIDs). Herpesviruses have also been hypothesized to contribute to fibromyalgia (FM), a chronic pain syndrome frequently comorbid with FGIDs. The purpose of this study was to compare the prevalence of gastric herpesvirus infection in patients with FGIDs, with and without comorbid FM, to that of controls.

Methods: For this pilot case-control study, we enrolled 30 patients who met both the Rome IV diagnostic criteria for one or more FGIDs and the American College of Rheumatology 2010 criteria for FM, 15 patients with one or more FGIDs without comorbid FM, and 15 control patients. Following endoscopic examination, gastric biopsies were analyzed for herpesvirus DNA and protein, Helicobacter pylori infection, and histological evidence of gastritis. Importantly, the viral nonstructural protein ICP8 was used as a marker to differentiate cell-associated actively replicating virus from latent infection and/or free virus passing through the GI tract.

Results: Gastric herpes simplex virus type 1 (HSV-1) infection, as indicated by ICP8 presence, was significantly associated with FGIDs in the presence (OR 70.00, 95% CI 7.42-660.50; P < .001) and absence (OR 38.50, 95% CI 3.75-395.40; P < .001) of comorbid FM. Neither histological gastritis nor H. pylori infection were found to be associated with FGIDs or FM.

Conclusions: HSV-1 infection was identified in gastric mucosal biopsies from patients with diverse FGIDs, with and without comorbid FM. Larger, multi-center studies investigating the prevalence of this association are warranted.

Source: Duffy C, Pridgen WL, Whitley RJ. Gastric herpes simplex virus type 1 infection is associated with functional gastrointestinal disorders in the presence and absence of comorbid fibromyalgia: a pilot case-control study. Infection. 2022 Apr 21. doi: 10.1007/s15010-022-01823-w. Epub ahead of print. PMID: 35445970.  https://link.springer.com/article/10.1007/s15010-022-01823-w (Full text)

Altered Pain in the Brainstem and Spinal Cord of Fibromyalgia Patients During the Anticipation and Experience of Experimental Pain

Abstract:

Chronic pain associated with fibromyalgia (FM) affects a large portion of the population but the underlying mechanisms leading to this altered pain are still poorly understood. Evidence suggests that FM involves altered neural processes in the central nervous system and neuroimaging methods such as functional magnetic resonance imaging (fMRI) are used to reveal these underlying alterations. While many fMRI studies of FM have been conducted in the brain, recent evidence shows that the changes in pain processing in FM may be linked to autonomic and homeostatic dysregulation, thus requiring further investigation in the brainstem and spinal cord.

Functional magnetic resonance imaging data from 15 women with FM and 15 healthy controls were obtained in the cervical spinal cord and brainstem at 3 tesla using previously established methods. In order to investigate differences in pain processing in these groups, participants underwent trials in which they anticipated and received a predictable painful stimulus, randomly interleaved with trials with no stimulus. Differences in functional connectivity between the groups were investigated by means of structural equation modeling.

The results demonstrate significant differences in brainstem/spinal cord network connectivity between the FM and control groups which also correlated with individual differences in pain responses. The regions involved in these differences in connectivity included the LC, hypothalamus, PAG, and PBN, which are known to be associated with autonomic homeostatic regulation, including fight or flight responses. This study extends our understanding of altered neural processes associated with FM and the important link between sensory and autonomic regulation systems in this disorder.

Source: Ioachim G, Warren HJM, Powers JM, Staud R, Pukall CF, Stroman PW. Altered Pain in the Brainstem and Spinal Cord of Fibromyalgia Patients During the Anticipation and Experience of Experimental Pain. Front Neurol. 2022 May 6;13:862976. doi: 10.3389/fneur.2022.862976. PMID: 35599729; PMCID: PMC9120571. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120571/ (Full text)