Evidence of neuroinflammation in fibromyalgia syndrome: a [18F]DPA-714 positron emission tomography study

Abstract:

This observational study aimed to determine whether individuals with fibromyalgia (FM) exhibit higher levels of neuroinflammation than healthy controls (HCs), as measured with positron emission tomography using [18F]DPA-714, a second-generation radioligand for the translocator protein (TSPO).
Fifteen women with FM and 10 HCs underwent neuroimaging. Distribution volume (VT) was calculated for in 28 regions of interest (ROIs) using Logan graphical analysis and compared between groups using multiple linear regressions. Group (FM vs HC) was the main predictor of interest and TSPO binding status (high- vs mixed-affinity) was added as a covariate. The FM group had higher VT in the right postcentral gyrus (b = 0.477, P = 0.033), right occipital gray matter (GM; b = 0.438, P = 0.039), and the right temporal GM (b = 0.466, P = 0.042). The FM group also had lower VT than HCs in the left isthmus of the cingulate gyrus (b = −0.553, P = 0.014).
In the subgroup of high-affinity binders, the FM group had higher VT in the bilateral precuneus, postcentral gyrus, parietal GM, occipital GM, and supramarginal gyrus. Group differences in the right parietal GM were associated with decreased quality of life, higher pain severity and interference, and cognitive problems.
In support of our hypothesis, we found increased radioligand binding (VT) in the FM group compared with HCs in several brain regions regardless of participants’ TSPO binding status. The ROIs overlapped with prior reports of increased TSPO binding in FM. Overall, increasing evidence supports the hypothesis that FM involves microglia-mediated neuroinflammation in the brain.
Source: Mueller C, Fang YD, Jones C, McConathy JE, Raman F, Lapi SE, Younger JW. Evidence of neuroinflammation in fibromyalgia syndrome: a [18F]DPA-714 positron emission tomography study. Pain. 2023 Jun 15. doi: 10.1097/j.pain.0000000000002927. Epub ahead of print. PMID: 37326674. https://pubmed.ncbi.nlm.nih.gov/37326674/

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.