Scientific Rationale for the Treatment of Cognitive Deficits from Long COVID

Abstract:

Sustained cognitive deficits are a common and debilitating feature of “long COVID”, but currently there are no FDA-approved treatments. The cognitive functions of the dorsolateral prefrontal cortex (dlPFC) are the most consistently afflicted by long COVID, including deficits in working memory, motivation, and executive functioning. COVID-19 infection greatly increases kynurenic acid (KYNA) and glutamate carboxypeptidase II (GCPII) in brain, both of which can be particularly deleterious to PFC function.
KYNA blocks both NMDA and nicotinic-alpha-7 receptors, the two receptors required for dlPFC neurotransmission, and GCPII reduces mGluR3 regulation of cAMP-calcium-potassium channel signaling, which weakens dlPFC network connectivity and reduces dlPFC neuronal firing. Two agents approved for other indications may be helpful in restoring dlPFC physiology: the antioxidant N-acetyl cysteine inhibits the production of KYNA, and the α2A-adrenoceptor agonist guanfacine regulates cAMP-calcium-potassium channel signaling in dlPFC and is also anti-inflammatory. Thus, these agents may be helpful in treating the cognitive symptoms of long COVID.
Source: Fesharaki Zadeh A, Arnsten AFT, Wang M. Scientific Rationale for the Treatment of Cognitive Deficits from Long COVID. Neurology International. 2023; 15(2):725-742. https://doi.org/10.3390/neurolint15020045 https://www.mdpi.com/2035-8377/15/2/45 (Full text)

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.