Several De-Regulated Chemokine Pathways Characterize Long COVID Syndrome

Abstract:

Introduction: The diagnosis of the Long COVID multi-organ syndrome is impeded by lack of circulating biomarkers. Hypothesis: We hypothesized, that post-COVID syndrome is associated with circulating protein de-regulation, enabling diagnosis of long COVID syndrome.

Methods: Consecutive patients (70% female, 55±8y) with long COVID syndrome (n=70, 64.3% female, 49±6y) and non-diseased, non-vaccinated healthy controls (n=23, 70% female, 55±8y) of the Vienna POSTCOV Registry (EC 1008/2021) were included, and blood samples were collected. Proteomics was performed by using the Olink proteomics technology (Olink Proteomics, Uppsala, Sweden), by using cardiovascular, Immunologic, inflammation and neurologic protein (3×96 protein) panels. Protein-protein interaction network were built by selecting the significantly dysregulated proteins from the 4 panels, and were classified into functional groups.

Results: Multiplex protein panel revealed 34 significantly de-regulated proteins as compared to controls. Gene ontology categorized the 29 upregulated proteins into several pathways with significant (false discovery rate <0.05) functional enrichment in biological processes (eg. death-inducing signaling complex assembly or positive regulation of tumor necrosis factor-mediated signaling pathway), and in molecular function (catalytic activity). Downregulated proteins were in association with chemokine-mediated signaling pathway and chemokine activity (Figure). KEGG pathway analyses revealed upregulated apoptosis, TNF- and NF-κB signaling pathways, but unchanged ACE2 receptors in patients with long COVID syndrome.

Conclusions: Several de-regulated chemokine pathways characterize long COVID syndrome and may serve as a combined biomarker panel for long COVOD diagnosis and target drug prediction.

Source: Mariann Gyongyosi, Emilie Han, Dominika Lukovic, Kevin Hamzaraj, Jutta K Bergler-Klein and Ena Hasimbegovic. Several De-Regulated Chemokine Pathways Characterize Long COVID Syndrome. Originally published 6 Nov 2023,Circulation. 2023;148:A18340 https://www.ahajournals.org/doi/abs/10.1161/circ.148.suppl_1.18340

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.