Abstract:
Chronic fatigue syndrome (CFS) has a high incidence due to the increased pressure of daily life and work in modern society. Our previous clinical studies have found the effects of electroacupuncture (EA) on CFS patients, however, the mechanism of EA on CFS is still unknown. In this study, we investigated the effects of EA on cardiac function in a CFS mouse model to explore its underlying mechanism.
The mice were randomly divided into three groups: control, CFS, and CFS mice receiving EA (CFS + EA). After behavioral assessments and echocardiographic measurement, blood and heart tissue of the mice were collected for biochemical tests, and then we evaluated the effects of EA on the CFS mouse model when nitric oxide (NO) levels were enhanced by l-arginine.
The results showed that EA ameliorated the injured motor and cardiac function. Meanwhile, EA also inhibited increased expression of inducible nitric oxide synthase (iNOS) at heart tissue and the serum NO levels in mice subjected to sustained forced swimming stress. Furthermore, the NO level in serum increased with l-arginine administration, which blocked the effects of EA on CFS mice. This study suggested that EA could improve the motor function and cardiac function in CFS mice and its effects may be associated with the down-regulation of iNOS/NO signaling.
Source: Zhu Y, Wang J, Yao L, Huang Y, Yang H, Yu X, Chen X, Chen Y. Electroacupuncture at BL15 attenuates chronic fatigue syndrome by downregulating iNOS/NO signaling in C57BL/6 mice. Anat Rec (Hoboken). 2022 May 24. doi: 10.1002/ar.24953. Epub ahead of print. PMID: 35608198. https://pubmed.ncbi.nlm.nih.gov/35608198/