Impaired systemic oxygen extraction long after mild COVID-19: potential perioperative implications

Editor:

The extraordinary number of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections world-wide has made it inevitable that patients who have recovered from COVID-19 will present for anaesthesia and surgery. Recent data indicate that in the United States alone, roughly one-third of the population had been infected by the end of 20201. With this in mind, we read with interest the recent correspondence by Silvapulle and colleagues2 underscoring the wide range of symptoms that often follow recovery from COVID-19 and the complexity of considering residual physiologic abnormalities when assessing perioperative risk. They note that patients suffering from “long COVID” have been reported to exhibit demonstrable abnormalities in several biomarkers as well as cardiac, neurologic, haematologic, renal, hepatic, and endocrine impairment. Based on current evidence, the authors suggest that patients previously experiencing mild COVID-19 but without clear evidence of these sequelae can be regarded as having minimal additional perioperative risk. In this context, the relatively young person who suffered mild COVID-19 a year earlier, complains of exertional fatigue but admits to being sedentary and unfit, and has no objective evidence of cardiopulmonary disease or other organ dysfunction will likely raise little concern.

While the morbidity and mortality associated with severe COVID-19 has appropriately received considerable attention, most SARS-CoV-2 infections result in relatively mild, self-limited symptoms not requiring hospitalization. Nonetheless, some of these patients subsequently experience persistent fatigue and reduced exercise capacity that is not attributable to cardiopulmonary impairment diagnosed by conventional means3. Several mechanisms have been proposed including anaemia, deconditioning, and red blood cell abnormalities4. However, many of the studies describing these mechanisms were conducted in patients following hospitalization and/or within a few months of recovery.

A central focus of perioperative management has always been maintenance of systemic oxygen delivery (DO2) and tissue perfusion. Toward this end, research has defined how the fundamental relationships between DO2, tissue oxygen consumption (VO2), and oxygen extraction (EO2) shift from the intraoperative setting where VO2 tends to be reduced, to the postoperative period when VO2 increases5. Although a range of postoperative complications has been linked to suboptimal tissue DO26,  7, the incidence of these complications appears relatively low in relation to the documented incidence of perioperative hypoxaemia8,  9, particularly when considered in light of potential coincidence with other common factors such as anaemia, hypovolaemia, and transient hypotension. A contributing factor may be that, as with most physiological systems, evolutionary pressure has yielded compensatory mechanisms for reduced DO2 to many organs. Under most circumstances, when DO2 is low, VO2 is maintained by augmented EO2 to prevent tissue hypoxia10. This compensatory EO2 reserve persists until limits that vary among tissue beds are reached and VO2 becomes DO2-dependent. Ultimately, in the perioperative setting where alterations in regional VO2/DO2 balance occur with regularity it is probable that this EO2 reserve is working continuously ‘behind the scenes’ for organ protection.

But what if this seemingly occult protective mechanism is impaired? Clinical experience imparts heightened suspicion of tissue vulnerability in patients with defined end-organ impairment or risk factors for reduced functional reserve such as aging, smoking, diabetes mellitus, or hypertension. But how does this affect that relatively young person who admits to being sedentary and unfit but has no objective evidence of cardiopulmonary disease, and whose only other notable medical history is mild COVID-19 a year earlier? A recent report proposed the existence of a specific “long COVID phenotype” with exertional intolerance and dyspnoea despite normal pulmonary function11, raising the question of whether there is more to this patient than meets the eye.

Read the rest of this article HERE.

Source: Paul M. Heerdt, Ben Shelley, Inderjit Singh. Impaired systemic oxygen extraction long after mild COVID-19: potential perioperative implications. Published: December 27, 2021. DOI:https://doi.org/10.1016/j.bja.2021.12.036

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.