Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Induced by Repeated Forced Swimming in Mice

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by disabling fatigue of at least 6 months, in addition to symptoms such as muscle pain and muscle weakness. There is no treatment provides long-term benefits to most patients. Recently, clinical research suggested the involvement of pyruvate dehydrogenase (PDH) in ME/CFS. PDH is a crucial enzyme in the mitochondria matrix that links glycolysis to the tricarboxylic acid cycle and oxidative phosphorylation. However, it is little known whether PDH could be a therapeutic target. The purpose of this study was to establish ME/CFS in mice and to investigate the involvement of PDH in ME/CFS.

To induce the chronic fatigue in mice, a repeated forced swimming test was conducted. To evaluate fatigue, we measured immobility time in forced swimming test and starting time of grooming. An open field test was conducted on day 8. After 25 d of the forced swimming test, the mitochondrial fraction in gastrocnemius muscle was isolated and PDH activity was measured. Moreover, we evaluated the effect of PDH activation by administering sodium dichloroacetate (DCA).

In ME/CFS mice group, the immobility time and starting time of grooming increased time-dependently. In addition, the moved distance was decreased in ME/CFS mice. PDH activity was decreased in the mitochondrial fraction of the gastrocnemius muscle of the forced swimming group. DCA treatment may be beneficial in preventing fatigue-like behavior in ME/CFS. These findings indicate that ME/CFS model was established in mice and that a decrease in mitochondrial PDH activity is involved with the symptom of ME/CFS.

Source: Ohba T, Domoto S, Tanaka M, Nakamura S, Shimazawa M, Hara H. Biol Pharm Bull. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Induced by Repeated Forced Swimming in Mice. 2019;42(7):1140-1145. doi: 10.1248/bpb.b19-00009. https://www.jstage.jst.go.jp/article/bpb/42/7/42_b19-00009/_article (Full article)

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.